

Lecture Notes in Computer Science 3908
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alain Bui Marc Bui Thomas Böhme
Herwig Unger (Eds.)

Innovative Internet
Community Systems

5th International Workshop, IICS 2005
Paris, France, June 20-22, 2005
Revised Papers

13

Volume Editors

Alain Bui
Université de Reims Champagne Ardenne
Departement de Mathématiques et Informatique
Campus du Moulin de la Housse, BP 1039
51687 Reims Cedex 2, France
E-mail: alain.bui@univ-reims.fr

Marc Bui
Université Paris 8
Laboratoire Recherche en Informatique avancée
c/o EPHE - Complex Modelling Systems and Cognition
41 rue G. Lussac, 75005 Paris, France
E-mail: mbui@ephe-sorbonne.org

Thomas Böhme
Technische Universität Ilmenau
Institut für Mathematik
98683 Ilmenau, Germany
E-mail: thomas.boehme@tu-ilmenau.de

Herwig Unger
Universität Rostock
Institut für Informatik
A.-Einstein-Str. 23, 18051 Rostock, Germany
E-mail: hunger@informatik.uni-rostock.de

Library of Congress Control Number: 2006924583

CR Subject Classification (1998): C.2, H.3-5, D.2, I.2.11, K.4.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-33973-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33973-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11749776 06/3142 5 4 3 2 1 0

Preface

This volume of Lecture Notes in Computer Science contains all accepted papers
of the 5th International Conference on Innovative Internet Community Systems
(I2CS), which was held at the Sorbonne in Paris, from June 20–22, 2005.

The previous four conferences in Ilmenau, Rostock, Leipzig (Germany) and
Guadalajara (Mexico) developed the profile of this event. Traditionally, there
are topics discussed in three main aspects. All of them must be considered in
a united manner in order to investigate and understand the emergence and
evolution of communities in the Internet: knowledge about networking, content
and text processing as well as theory. The goal of the I2CS workshop is to bring
researchers from both industry and academic fields together to discuss current
progress and future developments in these areas and to eliminate the gap between
theory and application.

At this point, we want to express immense gratitude to all the authors of the
submitted papers and to the members of the international Program Committee
for their contribution to the success of the event and a program of high quality.
In a peer-to-peer review process, 17 papers were selected out of 27 submissions.
Three reviewers evaluated all the papers and sent the authors comments on
their work. The three invited talks discussed the innovation process revisited by
the Internet, GRID computing and aspects of learning in communities. These
talks were given at the beginning of each conference day, which provided a great
framework for the following presentations. Sorbonne, one of the oldest and most
famous universities in this world, as well as Paris gave us an inspiring environ-
ment for intensive and fruitful discussions.

Our next conference, the I2CS 2006, will take place in the charming city
Neuchatel in Switzerland. We hope that most of our former and present par-
ticipants as well as many new colleagues will take this opportunity to continue
exchanging their knowledge and experiences devoted to the development and use
of Internet communities.

June 2005 Alain and Marc Bui
Thomas Böhme

Herwig Unger

Organization

Steering Committee

T. Böhme, Ilmenau, Germany
G. Heyer, Leipzig, Germany
M. Bui, Paris, France (Local Chair)
A. Mikler, Denton, TX, USA
H. Unger, Rostock, Germany (Conference Chair)

Scientific Committee

A. Anbulagan, Canberra, Australia
A. Bui, Reims, France (Local Chair)
A. Brandstädt, Rostock, Germany
J. Brooke, Manchester, UK
N. Deo, Orlando FL, USA
D. Dergint, Curitiba, Brazil
K.-P. Fähnrich, Leipzig, Germany
H. Fouchal, Guadeloupe, France
T. Haupt, Mississippi State, USA
N. Kalyaniwalla, Halifax, Canada
P. Kropf, Montreal, Canada
M. Kunde, Ilmenau, Germany
V.M. Larios-R., Guadalajara, Mexico

I. Lavallée, Paris, France
C. Lecerf, Nı̂mes, France
S. Lukosch, Hagen, Germany
Y. Paker, London, England
U. Quasthoff, Leipzig, Germany
M.A.R. Dantas, Florianopolis, Brazil
F. Ramos, Guadalajara, Mexico
A. Ryjov, Moscow, Russia
D. Tavangarian, Rostock, Germany
D. Tutsch, Berlin, Germany
T. Ungerer, Augsburg, Germany
P. Young-Hwan, Seoul, South Korea

Organizing Committee

A. Bui, M. Bui, F. Jouen, C. Butelle (France)

Table of Contents

Innovation Processes Revisited by Internet
Serge Soudoplatoff . 1

Lightweight Causal Cluster Consistency
Anders Gidenstam, Boris Koldehofe, Marina Papatriantafilou,
Philippas Tsigas . 17

Distributed Calculation of PageRank Using Strongly Connected
Components

Michael Brinkmeier . 29

A Structured Peer-to-Peer System with Integrated Index and Storage
Load Balancing

Viet-Dung Le, Gilbert Babin, Peter Kropf . 41

Grid-Based Vehicle Locating System
Dhaval Shah, Dhawal Patel, Sanjay Chaudhary . 53

The Guadalajara Urban Traffic Control Project – An Overview About
Features and Needs for Tomorrow’s Mobile City Communities

Helena Unger . 68

Towards P2P Information Systems
Magnus Kolweyh, Ulrike Lechner . 79

A Random Walk Topology Management Solution for Grid
Cyril Rabat, Alain Bui, Olivier Flauzac . 91

Content-Oriented Self-organization in Unstructured P2P Data Sharing
Systems. An Approach to Improve Resource Discovery

German Sakaryan, Herwig Unger . 105

Improving Reliability of Distributed Storage
Ricardo Marceĺın-Jiménez . 117

Using Lamport’s Logical Clocks to Consolidate Log Files from Different
Sources

Roberto Gómez, Jorge Herrerias, Erika Mata . 126

A Simple Approach for Testing Web Service Based Applications
Abbas Tarhini, Hacène Fouchal, Nashat Mansour 134

VIII Table of Contents

Optimizing and Reducing the Delay Latency of Mobile IPv6 Location
Management

Abbas Malekpour, Djamshid Tavangarian, Robil Daher 147

Compositional Constraints Generation for Concurrent Real-Time Loops
with Interdependent Iterations

I. Assayad, S. Yovine . 159

Application Signaling Protocols as Basis for QoS in IP-Based Wireless
Networks

Robil Daher, Djamshid Tavangarian, Abbas Malekpour 171

3D Emotional Agent Architecture
Félix F. Ramos, Luis Razo, Alma V. Martinez, Fabiel Zúñiga,
Hugo I. Piza . 181

A Distributed Preflow-Push for the Maximum Flow Problem
Thuy Lien Pham, Marc Bui, Ivan Lavallee, Si Hoang Do 195

Author Index . 207

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 1 – 16, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Innovation Processes Revisited by Internet

Serge Soudoplatoff

Partnership & Martech Director, Co-founder and President, Almatropie
serge@soudoplatoff.org
www.soudoplatoff.com

Abstract. Internet, far from being a simple technology, is truly changing our way
of life. Just as the invention of the alphabet, or the printing, Internet is a
fundamental technology that we have designed, but which, in turn, is impacting our
behavior, our relationship with the world and ourselves. By empowering ordinary
citizens, it helps us to face a cognitive paradigm shift. This is deeply rooted in the
design process of Internet, which has led a new way to perform innovation.

1 Some Internet Fundamentals

1.1 The Deep Roots of Internet

When trying to understand why Internet became so important, two very important
quotes come to mind.

The first one is from a extremely well-known visionary, whose work was the great
announcement of the Internet era: Marshall McLuhan.1 Not only did he foresee the
“global village”, not only did he say this sentence, whose implications are very
difficult to admit: “The medium is the message”, not only he said that technologies
are extensions of our bodies, but he positioned one of the fundamental revolution that
Internet is helping us to achieve: to transform us from “passive” spectators into “hot”
actors. This is to be seen not in the official web sites of standard media (press, TV,
radios), simple transcriptions of the content from one medium to the Internet, but in
the numerous personal web pages, blogs, web forums, peer to peer systems, where
million of people are exchanging ideas, contents, passion, objects, or anything that
can possibly can be exchanged.

The second quote, albeit close to McLuhan’s ideas, is a more comprehensive
highlight of the relationship between mankind and technology. It comes from a
French paleontologist, André Leroi-Gourhan, who understood the co-design between
the hand and the tool. As soon as the standing position was adopted by our ancestors,
the hand became free to create tools, which, in turn, changed the people, and also
prepared for the invention of speech, something quite fundamental for the evolution
of mankind, and the importance of interpersonal communication.

Therefore, same as the crane is an extension of our arm, and helps leverage our
physical strength, Internet can be viewed as one technology which is the extension of

1 Though many high quality web sites refer to Marshall McLuhan’s work, there exists an

official one, which can be found at http://www.marshallmcluhan.com/.

2 S. Soudoplatoff

our brain, and helps amplify our cognitive capacities. But Internet was not the first
technology which helped us in such a way. Our knowledge, our interactions, have been
impacted by many other technologies, of which some major one has accompanied a
society paradigm shift.

We can propose that there have been three major cognitive paradigm shifts, all based
on two innovations. The invention of writing, and 3000 years later, the invention of the
alphabet, have been along with the transformation of a nomadic type of society, based
on hunting and fishing, to a more sedentary type of society, with the development of
agriculture and breeding. The invention of the book, and 500 years later, of printing, has
been the necessary technological condition to create the Renaissance, the great
discoveries, and the industrial world. The invention of the computer, not in the
computational sense, but in the cognitive meaning, and 25 years later, of the Internet, is
what we need to move from the industrial world to something else, which is usually
called either “the knowledge society”, or the “communication society”. We shall
propose, at the end of this paper, another definition: we are entering the “interaction”
society, where the big issue which we need to address is complexity.

Table 1. The three major knowledge manipulation paradigm shifts

 Knowledge representation shift Knowledge broadcast shift

Farming societies Writing Alphabet

Industrial societies Book Print

Interaction societies Computer Internet

It is important to stress the fundamental innovation which is the alphabet. Without
the alphabet, abstractions are more difficult to represent. It is a fact that the explosion
of knowledge, in many fields such as medicine, astronomy, mathematics, physics,
philosophy, that the ancient Greeks have created was based on the usage of an
alphabet. More important for the creation of the Internet, without the alphabet, there is
no code; the computer simply could not exist.

We may say that the deep roots of Internet shall be found in those innovations: the
writing, the alphabet, the book, the printing. The same debates, as the one we
experience nowadays about the real importance of Internet, existed during all those
transition times. The most famous one is probably the denegation of writing by
Socrates, who used to say that “writing does not convey knowledge, but the illusion
of knowledge”. A sentence that we have heard so many times about Internet…

1.2 Three Industries

It is important to recall how the Internet was built, from an industrial perspective. Its
very innovative building mechanism had many consequences on the usage of Internet,

 Innovation Processes Revisited by Internet 3

of its rapid acceptance among people, and was the basis for its tremendous power of
transformation.

It is usual to present the Internet as a result of a question about how to design a
network which could resist a nuclear attack. This issue was raised at DARPA, the US
defense agency, but it is only a minor element on the construction of the network, and
brings no real clue about the fast acceptance of this network.

It must be kept in mind that the two founding papers, as quoted on the Hobbes
Internet timeline2, were the Kleinrock article [1] written in 1961 which describes
packet switching communication and the Licklider & Clarck paper written in 1962
about a network encompassing social interaction [2].

The explanation of the fast growth of Internet can be found in the remark that is the
result of a confrontation between three major industries: Information technologies,
Telecommunication, and Media.

Fig. 1. The three industries which have prepared the path to the emergence of Internet

Those three industries have their own characteristics, their own culture, and they
have all brought to the construction of the Internet a unique know-how.

The Information Technologies industry is composed of hardware manufacturers,
software vendors, developers. It is a recent and very fast changing industry.
Companies who were leaders, or well-known, have died in a few years, such as
Digital, bought by Compaq, itself almost absorbed by Hewlett-Packard. IBM was on
the edge of dying, and recovered by abandoning part of its hardware manufacturing.
On the other hand, Microsoft and Intel have been for ever flourishing, to such a point
that it is difficult to imagine what could happen to them, even though it is clear that
companies die one day or another. Others, like Apple, are still searching for their
market. It is an industry very much based on trial and error culture for defining its
champions. The digital world is the basis for this industry.

The Telecommunication industry is made of telecommunication operators,
incumbent or newly born, and the companies which they have generated, such as
Lucent, Alcatel, Nortel, Siemens, Nokia, and Ericsson. It was built owing to the tax
payer money, and faced the difficult technological challenge to create a network. Its

2 http://www.zakon.org/robert/internet/timeline/

4 S. Soudoplatoff

culture is very military oriented, traditionally composed of big corporate players, with
an engineer type of management: a strong belief in the technology as superior, and a
product based marketing rather than a service based one. All players in this industry
have recently suffered, but their cash flow is so big that they have been able to
survive, at least up to now. The digital world is just a technology like another for the
telecommunication industry, which has not always been good to promote it into social
values. A good example of this is the ISDN invention3, which never found its market.

The media industry includes press, radio, TV, music, movie industry. It is composed
of big major players, such as Sony, Time Warner, Universal, Murdoch, and Hollywood.
It has a trend to always absorb little players to create big empires, at the image of
William Randolph Hearst, whose life is beautifully told by Orson Welles in the movie
“Citizen Kane”. It has a real power, the one which is called the fourth power. In 1898,
the Maine battleship was blown-up. One theory was that the Spanish did it, to start a
war with the US. Hearst sends two photographers, who, seeing nothing serious, mailed a
message to Hearst quoting this. The answer from Hearst was “You furnish the pictures,
I’ll furnish the war.” The culture of this industry is based on the assumption that
possessing the content is a unique asset that makes it above all others. The digital world
is considered as the Devil for this industry, which is not able right now to understand the
value beneath it. Their difficulty to find the real value of peer to peer systems was un-
fortunately transferred into a very aggressive behavior in the face of this phenomenon.

Each of these industries is bringing to the Internet world a unique value
proposition: interaction for the Information Technology Industry, peer to peer for the
telecommunication industry, content for the media industry.

The Information Technology industry is the one which has the done most research
and explored a lot of new ideas in knowledge management and man machine
interfaces. From Database manipulation tools to natural language query, from XML
standards to hypertext ones, from keyboard to mouse, the constant quest for better
interaction led to a huge richness in the interaction between human and the machine.
The other two industries have not so far achieved such a level of interaction; plain old
telephones, as well as TV remote controls, are probably amongst the worst machines
in terms of interaction.

The Telecommunication industry has invented the peer to peer, this extraordinary
facility to hang up your phone, to dial in a number, and to be connected with another
person even on the other side of the planet is so usual that we forget the beauty of it.
The funny thing is that, when the telephone was invented, one of the main purposes
was “to listen to the music from home without the need to physically go to the concert
hall”. It is a constant in the telecommunication industry to invent beautiful
technologies without guessing the extraordinary social impact it may have. Telephone
was one, SMS another one. On the opposite, it took a long time before networking
was introduced in our personal computers, and in our homes. And we shall even not
mention how the media industry is considering peer to peer…

The Media industry is bringing content: meaning, beauty, pleasure, which is unique.
This is not to be found in the other two industries. Internet is bringing a lot to the media
Industry: content archiving, content retrieval, CD indexation systems such as cddb,
Imdb, etc…

3 “Innovation Subscribers Don’t Need”, as it was quoted.

 Innovation Processes Revisited by Internet 5

Interactions between the industries have occurred in the past. In the years 1980s,
Bulletin Board Systems (BBS) were combining interaction and some limited local
peer to peer capacities. In the years 1990s, CD-Rom was combining content and
interaction. But we had to wait until 1995 for the real combination of the three
Industries into the expansion of Internet into wide audience.

The past 10 years have been extraordinarily rich, in terms of the explosion of
Internet usages, as we all experienced it. As an example, considering recent major
political issues, such as the war in Iraq, or the European constitution, it became
obvious that all traditional media companies were biased, and that Internet was the
only media where debate took place, where different ideas could be expressed, and
confronted, seen by millions of people, with their participation.

Before moving along, we should not forget one point: there is still one huge part of
our world which is not connected to the Internet; there is a huge part of mankind
which does even not have access to electricity. The following figure, which it is the
submarine bandwidth capacity, is a good illustration of where the interactions are
located. It is one of the most efficient lessons of geopolitics that we can dream of.

Fig. 2. The global Internet map, from Telegeography, http://www.telegeography.com/maps/

2 Four Major Disruptions

We propose that the construction, and the expansion of Internet, is based on four
paradigm shifts. One is about the technology, which was designed with the idea of
going totally reverse from what the telecommunication operators were promoting at
that time. The second one is about funding, and how the entrepreneurial spirit of the
Silicon Valley has played a key role. The third one is about Business Model, and how
moving to an intangible economy is important. The last one is about the usage, and is

6 S. Soudoplatoff

the key point to understanding why Internet is more than a technology, and has a real
sociological impact.

2.1 Technology Disruption

It is always difficult to define what really an innovation is. However, we may say that
Internet, both in its construction process, and its technological choices, is a real
breakthrough. We must understand Internet as a complex system based on three
pillars: a network of networks, a set of protocols, and a bunch of different services, of
which many of them have not been invented yet.

The fast growth of the network is explained by the founding choice to go for a
packet switch network rather than a traditional commutated network. The best
analogy to explain this is to compare train versus road. A commuted telephony
network is a little like a train network: the bandwidth is allocated for the phone call,
same as the tracks are allocated for the train. If there is congestion, the phone call
cannot be placed, such as trains don’t leave if the track is not open. On the opposite,
in a packet network, content are placed in packets which can go through different
routes to reach their destination; just like a car drivers who wants to go from one
place to another has the choice of the road. Just like if the road traffic is heavy, the
journey can be very long, if the network is busy, transmission time is high.

The first innovation that packet circuit brings is that it allows for an exponential
growth of the global network. Connecting one more network to the Internet is simply
done by building a gateway, whether it is a corporate network, a metropolitan network
a university network, or simply a home network. This explains the explosion of the
number of computer connected. The other advantage is a global cost reduction: the
same architecture applies everywhere. The last advantage is independence between
the protocol and the transport layer, whether it is copper, cable, fiber optic, or wireless.
The astronauts in the space shuttle are connected to the Internet and can read their
email sent by their relatives.

Along with the packet-switch network, the other big innovation was the RFC
mechanism for the definition of standards. Few managers, even in 2005, believe that
something intelligent can possibly emerge from a decision process based on voting.
But this is how all Internet norms were designed: published “Request for Comments”,
followed by a discussion, then a vote, with the only constraint that there must exist a
first implementation of the norm. How can this have produced such a complex object
which is the Internet, without any major bug, is fascinating. But it worked.

The third innovation was the difficult choice to give up with total quality, but rather
to rely on best effort strategy. This was the main concerns that telecommunication
operator had towards voice over IP at its beginning: how a network based on best effort
can possibly transport voice with the same quality as telephony. Again, in 2005, the
voice over IP market is booming, and becomes more and more a standard offer,
including from the incumbent operators themselves. The proof has been done that a best
effort strategy was working.

The fourth innovation resides in the independence between services, and network.
As long as a service respects the norms and protocol of Internet, no one cares about
which type of network topology it is going through. This, combined with the usage
disruption, has been key to the explosion of Internet.

 Innovation Processes Revisited by Internet 7

2.2 Financing Disruption

At a time when there seems to be a debate about liberalism and a global economy,
Internet is a perfect example of a good combination of both government, and private
funding. At the very first period of time, Internet was funded by DARPA, the US
Defense Advanced Research Projects Agency. This has worked for nearly 30 years,
allowing the growth of the network to a “pre-commercial” status.

This funding could not be allowed for more commercial usage. The famous Al
Gore white paper about a “National Information Infrastructure”, published in 1993,
started the beginning of the commercial Internet. It deliberately stated “a combination
of public and private effort”. But the true story is to be found in the history of Silicon
Valley, and even further, in the Gold Rush.

In XIXth century, there were people in California, who had influence on the choice of
the location of the train coming from the east coast, through the Rocky Mountains. They
were buying such lands at low price, and reselling them to the government, making very
high profit. They were called “the robber barons”. One of them, after the tragic loss of
his only child, decided to invest his money into a utopia, more precisely a University
that would be totally different from East Coast Universities: women would be allowed,
as an example; but also, the entrepreneurship would be encouraged. His name was
Leland Stanford.

California has always been a land of utopia. The Gold Rush was more than just
looking for riches; it was a utopia for people “disappointed by the European
revolution outcome”: to build a different type of society, more global. This utopia is
also in the principle that were introduced in building Stanford University, the idea that
technologies should not remain pure laboratory ideas, but that they should be made
useful for the people. This was the basis for the creation of a system to finance the
inventors. Among the first ones, the most famous where two engineers who, in their
garage in Palo Alto, designed a brand new oscilloscope, two people by the name of
Bill Hewlett and Dave Packard. And, later, the personal computer industry happened,
which created and popularized the name of the “Silicon Valley”.

However, back in the 1990s, the Silicon Valley was in a bad mood. Innovation
seemed to have vanished, issues were mostly industrial, and Venture Capitalists were
seeking for new fields of opportunity. And there was Internet, already widely deployed,
which had successfully passed its technological proof, and offering one killer appli-
cation that was just invented, the word wide web. Moreover, all our three major
industries had not understood the Internet. The telecommunication industry simply
ignored it, the computer industry did not understand it, and the media industry did not
care. AOL and CompuServe were supposed to be the only model for interconnecting
people. This situation was a dream for the Venture Capitalists. With the help of Al Gore,
the network was opened, and Internet phase II could start, with the success that we know.

Just a look at those two following figures is quite illustrating. The European
Commission, which had launched multi-annual R&D framework programs, was
spending 16 billion Euros over a 5 year program. At the peak of the venture capital,
US ventures were spending over 25 billion dollars per quarter. The Internet is truly a
modern venture story.

8 S. Soudoplatoff

Fig. 3. Comparison between European R&D Framework Programs and US Venture investment

2.3 Business Model Disruption

Funding a company is not sufficient. It has to gain money, and for this to attract
customers, and to sell them product and services.

Here comes one of the most intriguing paradoxes for many people: how come the
Internet can be even more than a business, a real industry, but carrying ideas of “free”
access to content or services. Of course, users need to pay for their access, but news is
free, weather is free, telephony is free with VoIP, content is free with peer to peer
systems. On the other side, many companies have tried to transform the value carried
by Internet into profit. Some have been successful, like the three major Internet
companies, often quoted for their success: Amazon, Ebay, and Google. Some others
have failed, and have not survived the bubble explosion, like Altavista, who was the
very first plain text search engine, many years before Google.

In fact, Internet is not a free system; it relies on the business model of an intangible
economy, while many people still think of the economy of a tangible one. Internet
was not the first industry to make this move: the airline industry has shown the path,
some 20 years ago. Let us describe those two models.

An intangible economy is an economy of scarcity. It was the post-war economy,
when everything was ruined and had to be rebuilt. It is also the economy of luxury. In
an intangible economy, there are more potential buyers than products. The first
consequence is that the buyer has to prove the feasibility of the transaction, and he has
to compete with other buyers. The transaction is based on tangible criterions: people
were opening the hood of a car to check the engine. People were buying things that
would first of all last a long time. In this economy, the value is in production.

Then people, at least in occidental world, became richer. And slightly, the
economy shifted to another model. An intangible economy is an economy of
abundance. There are more products than buyers, and therefore the proof of the
transaction is now on the seller side. As products tend to more and more look alike,
the seller has to attract customers through intangible criterion: when buying a car, the
financing scheme is now more important than the engine. In this economy, the value
resides in transactions.

 Innovation Processes Revisited by Internet 9

It has two impacts: first the information, and the knowledge, becomes the funda-
mental for the transaction to happen; second business models become instable, but it
is structural, and we have to live with this.

Moreover, the rules that govern the tangible economy are not the same as the ones
which govern the intangible economy. This can be illustrated through four different
aspects: the price computation, the value distribution, the payer determination, and the
transaction roll-out frequency. It is important to mention that all those rules are not
independent one another; they altogether create the conditions to switch to a
intangible world. Let us focus on each of them.

Price Computation: We have learned at school the supposed fundamental rule of
economy, “price is equal to a cost plus margin”. This is quite true in a tangible
economy, but we are now facing a lot of cases where this rule is no longer valid,
where there is no longer relation between the manufacturing cost, which becomes
more and more difficult to determine, and the final price. Two examples can
illustrated this: airlines seats can be very cheap at the day of the departure if the plane
is not full, so the price is much lower than the marginal production cost; but people
can pay more than one euro for a SMS whose production cost is virtually zero. The
rule in an intangible economy becomes: “price is what people are willing to pay at the
time of the consumption”. Is it not what Shakespeare foresaw, when King Richard III
begs “my kingdom for a horse”? Surely, the production cost of a horse is not at the
same level as the value of a kingdom; in this precise case, we may suggest that the
value was probably in the transaction.

Value Distribution: There was a single relationship between a buyer and a seller.
Airline tickets were bought directly from Air France, Lufthansa, British Airways,
KLM, etc; telephony systems were bought directly from the telecommunication
operator. In a service world, what is wanted is an aggregation of services: people who
want to spend a week-end in a European city do not want to bother about aggregation
of services. They want a single place to get the air ticket, the airport transfer, the
hotel, the restaurant, the museum entry, etc. Companies must therefore partner
together, and create business eco-systems, a much more sophisticated answer than
linear value chains, in order to meet the customer needs. As an example, a single ring
tone download may need an eco-system of up to 8 companies dealing together, with
money flows circulating sometimes both ways between them. Those complex eco-
systems will be increasing in the future.

Payer Determination: Normally, the consumer should be the payer. Again, this
becomes less and less true. People can watch TV, or listen to radio, for free. One of
the greatest shifts when GSM was invented was to make incoming calls free for the
GSM owner, and charging a lot the caller. Basically, this means that all people calling
someone were in fact paying for his GSM phone. In an intangible world, the
consumer is no longer the only payer. Sometimes he does not pay at all. At the
beginning of Internet, Yahoo let us believe that third-party payer (mostly advertise-
ment) was the unique model of the Internet. In fact, it was a very good model at the
beginning of the Internet, when Venture Capitalists did not care about revenues, and
when yahoo’s main competitor was AOL. The situation is now somehow different,

10 S. Soudoplatoff

though we could still argue that people will never pay for content. The most profitable
newspapers nowadays are free ones, such as Metro.

Transaction Roll-Out Frequency: Financial compensation were done “later”, people
would not count their working hours. At the beginning of airline code sharing,
compensation was done once a month, and, as tickets were not at all electronic, using
a very simple protocol: tickets from each airlines were physically weighed, and
compensation was done according to the respective number of kilograms… Now,
compensation must be done in real time and for each transaction. This is not easy to
do, as not all information systems are able to provide the proper information in real
time. As an example, many web sites use an overcharged number, or a SMS, to have
people paying for some content. But the relationship between the content and the
payment is not always done, and the revenue comes globally at the end of the month.
In the music industry, as an example, this global repartition prevents from paying
back the right amount to the proper artist.

In the Internet world, the key success is to position the company in an intangible
economy. Internet has grown because it has positioned itself at the articulation
between free and charged [3]. The Information Technology industry traditionally
prices per license. The media industry uses widely third party (mostly advertisement)
business model, and the telecommunication industry is very good at pay per use. But,
in the Internet world, dynamic business model becomes the rule. Business models are
structurally instable, and we may argue that, in the Internet world, the “killer app”,
which everyone is looking after, is the business model. And, in order to determine the
proper business model, the best way, as there are no rules, is constant trial and error.
Above all, it is important to constantly keep an eye on the business model and to be
able to change it rapidly when necessary.

The best example of this structural instability of business models may be found in
the very high potential threats that each of the three major industries is facing: WiFi
and free IP telephony for the telecommunication sector, open sources for the IT
industry, and Creative commons for the media industry…

2.4 Usage Disruption

Telecommunication operators were providing very simple and basic services. The
first one, by far, is to simply make a phone call. It still remains a very fundamental
usage of telecommunication.

Internet, on the opposite, offers a wide range of services. Web surfing, email, chat,
radio, TV, search engines, messages board, telephony integrated with other services,
e-commerce, airplane train and bus schedules, hotel reservation world-wide, parcel
shipping monitoring, price comparison, meteorology, access to databases, satellite
images, etc. Even the simple content offering is huge: Google is proud to announce
more than 8 billion indexed web pages, but the invisible web, those pages that have
never been indexed by any search engines, is much larger. A recent survey4 showed
that the 60 largest databases on the internet contain a total of more than 40 times the
known web.

4 http://www.brightplanet.com/infocenter/largest_deepweb_sites.asp

 Innovation Processes Revisited by Internet 11

Telecommunication services were designed using what is called a “techno-push”
attitude. This method is characteristic of the early stages of a technology. Managers
are engineers; the value propositions are purely technological. The customer has no
other choice than buying, and if he does not buy, the conclusion was that “the sales
people are not good to explain him why he should buy” (sic).

In this techno-push world, services are very long to create. It is a linear process,
which begins at the R&D center, where engineers develop ideas. Next is a prototype,
then it goes to production, and, the service is delivered.

This life cycle has a strong drawback: it is very long, many years in practice. In a
competitive world, customers are more rapidly changing their mood. Techno-push is a
method which is insensitive to users. It has produced good results in the past, but it is
no longer adequate.

Many years ago, marketing has invented another life cycle: market-pull. Marketing
people listen to customers; they conduct polls, user studies, and from this, define the
product that people need. They go to engineering department, and ask technicians to
create the solution.

Market-pull has strong advantages: cycles are shorter, stickiness to the demand is
much better, customers are happy, and tend to buy more. However, it has also draw-
backs: what if no technology exists to answer the demands? As an example, there is a
huge market, almost 6 billion potential customers, for a teleportation system, but no
answer yet… Another drawback is that it is insensitive to innovation. Technical
inventions have no way to find a market unless there is a demand for it, which is
barely the case. People don’t always express their demand, just because they don’t
know it. The project manager of the Twingo, a very innovative car made by Renault,
privileged “an instinctive design rather than an extinctive marketing”.

Internet could not have been done in techno-push mode, because very few would
have accepted a purely technological invention without a social support. Internet would
never have been invented in a market-pull world, because nobody was able, except for a
few visionaries, to describe and ask for the world into which we are living right now.

It is in the development methods of Internet that we may find main reasons for it’s
widely spread social acceptance.

3 Innovation: The Internet Lessons

People who have created Internet have not invented original methods from scratch,
because they knew somehow that innovation starts by observation. They rather have
taken some good ideas coming from other industries, and have adapted them to fit
their own construction needs and assembled them to make a coherent system. It is in
the field of system analysis that we may grasp the keys to understand Internet
innovation. It is based on two strong systemic ideas: codesign methods, and putting
the power in the network.

3.1 Codesign

It is the computer industry that has popularized the ideas of codesign, although some
other industries like automobile have also used such techniques. Originally, the term

12 S. Soudoplatoff

codesign was used by engineers who were doing both hardware chips and software to
run on those chips at the same time. But the term has extended to cover other types of
development where people from many different disciplines participate together to the
design of an object or a service.

The basic idea behind codesign is to reduce design time, by getting away from
linear processes and rather move into constant systemic loops, where all aspects of the
problem are processed simultaneously. It started as concurrent engineering. This
method is the exact opposite from Taylorism, and has therefore a lot of implications,
including in the way companies are structured, processes are defined, and hierarchies
are implicated. This does not ease the introduction of this innovation into corporate
companies.

We shall present all the aspects of a codesign method, based on five different ideas.

Start with a Question. In traditional methods, a document is created, which contains
all the specifications of the product, or the service. Then a call for tender is perform in
order to find contractors to do the job, and the customer gives orders to a main
contractor, with purely contractual relationships between the two parties. This is
heavy in terms of manpower, and has a propensity to blur the picture at an early stage.
On the opposite, Innovative projects tend to begin with a question, rather than heavy
specification. The invention of the World Wide Web was done by Tim Bernard Lee
from the basic question: “how can group of scientist remotely located share joint
documents”.

Create a Multi-disciplinary Team. Once the question is defined, the project is created
to answer this question. The team which is set-up therefore must include all possible
profiles: R&D, technology, marketing, finance, and also, more and more, customers.
The concepts, the technology, the business model must be done jointly. When Internet
norms were voted, it was mandatory to have a first technical implementation. In a
traditional world, norms would be defined first, and then industrial companies would
create. By solving all issues at the same time, many bad paths, i.e. technical solution
that don’t work, or choices of a wrong market, are avoided at a very early stage of a
project. Therefore, there are no dead-ends, which are always time and money
consuming.

Take People Away from their Hierarchies. Companies organizations trend to be
vertical, thus creating more and more useless conflicts of power between various
departments, which in turn leads to less and less innovation. Hierarchies are good in a
top down military organization, when orders come from the top, and must be executed
without any discussion. This is opposite to the idea of a customer centric company,
where decision power must be as close as possible to the customer. People working
on the project are taken away from their hierarchies, for the time of the project, just as
the people who created the Internet were free to design the best object, with a
feedback loop coming from the user, not from their hierarchies.

Run a Constant Loop Between Technology and Usage. Next characteristic, also
popularized by the Internet world: instead of linear processes and planned design, the

 Innovation Processes Revisited by Internet 13

object emerges from a constant loop between technological proposition, and user
acceptance, thus avoiding the shift between the two. We can even propose that a key
success factor is to go through intuition phases, and rationalization phases, such as
“dream”, “observe”, “dare”, “create”, “try”, “learn”. Obviously, the very first browser
invented at CERN has nothing to compare with the actual ones, owing to such loops.

Put the User in the Loop. Traditionally, users or customers are either at the end of the
process, in techno-push mode, or at the beginning, in market-pull mode, but nowhere
else. Planning was mandatory, and important decisions were taken by managers
internal to a project. But building a product without a market is not a very good thing
to do. Introducing users at all important stages of the project insures a better stickiness
between the technology, the product or the service, and the usability. In that case,
decision must be based on trial and error, not purely on management meetings. This is
a not a neutral revolution, because it assumes that the user is as important as the
designer…

As a summary, product or services definition is more and more a joint learning
experience between designers and users. People having various profiles, and various
functions, can cross-fertilize each others. Information technology industry has grown
by developing such methods.

But what Internet brings is two-fold: first of all, Internet has shown that something
planetary, which unites millions of people (the one who are lucky to be connected),
can be designed and build in only 40 years. Secondly, Internet becomes the vector
which allows this method to spread and amplify. Internet, by its power of connecting
people, is the key to facilitate the creation of this common learning experience.

Internet creates the condition for a brand new experience: power is now moving
into the network.

3.2 Power in the Network

Although there is indubitably a focus on the blogosphere, which is fast growing, we
must remember that it all started with personal web pages, and, long before this, with
communities of interest.

Even before the Internet was wide open, communities were using BBS (Bulletin
Board System) as an electronic tool to communicate. The very first one, the Well, was
due to the vision of Howard Rheingold.5 Among the scientist community who created
the Internet, newsgroups were widely used for discussions about Request for
Comments. But they were not only used for this, one of the very first discussion
groups, at the early stage of the Internet, was about science fiction.

When the Internet was democratized, discussion groups became very important,
giving ordinary citizen a power which they never had before. We shall give two
examples of this.

The first example is about people who had AIDS. They started a discussion forum
on the Internet, where they were exchanging their experiences with the illness. It had
an incredible effect: it totally changed the relationships they had with their doctors.

5 http://www.rheingold.com

14 S. Soudoplatoff

Doctors had obviously a deep knowledge about AIDS, but patients had a real-time
view of everything that was happening: how other patients were experiencing
medicine, how efficient they were, who was surviving; a knowledge that doctors did
not have, because they were exchanging experiences through magazine or conventions,
at a much slower pace than newsgroups. Patients had a learning experience, which
made them at level of knowledge equivalent to the doctor’s knowledge.

The second example is quite famous, and is about the Pentium Bug. In 1994, Intel
introduces the Pentium, and very rapidly, a mathematician noticed a slight error in an
excel spreadsheet, and concluded, by comparing with a previous processor, that the
Pentium was not computing properly. He sent an email to Intel, who denied there was
a bug. The mathematician reported his experiment on an Internet newsgroup. Of
course, many other people repeated it, and confirmed that there was a problem. Intel
ended up admitting there was a flaw, and offered to replace the processors.

There are many other examples of such power that Internet newsgroups bring to
people, but those two were early ones, and quite characteristic.

The reason for this power is to be found in knowledge and logic. People who need
to synchronize clocks know about the Byzantine agreement: how to I send the other
half of the army the message that contains the time of attack, and be sure they have
properly received it. To solve this issue, knowledge has to be divided in three levels:
local knowledge (I have the information), common knowledge (everyone has the
information) and global knowledge (everybody knows that everybody has the
information). The strength of ordinary Medias is to bring knowledge from local to
common. Everybody who reads the same newspaper has the same level of informat-
ion. The power that Internet brings is to ease the move from common to global
knowledge. Intel had to face not only thousands of people who knew that there was an
issue, but thousands of people who knew that other people knew that there was an
issue. Doctors were facing patients who knew what other patients knew. With the
discussion forums, and now the blogs, trends in the opinions are easily created, and
perfectly noticeable.

By its capacity of interconnecting people, Internet is a real disruption. It allows for
a mechanism well know in biology: pattern emergence. What Internet creates are
information patterns.

This extraordinary power starts now being used by companies themselves. The
strength of eBay is not to be an auction site; it is to have structured a community of
people, by providing the notation mechanism. Each person on eBay has its own
profile, but this profile does not come from a government, a company or an expert;
each person votes for the other, so it is a result of the way the transaction happened.
Amazon not only allowed consumer to write reviews about the products Amazon was
selling, but it allowed other people to vote for or against the review.

This trend is increasing. On-going research performed by Dominique Cardon and
his team at France Telecom R&D, show that innovation is more and more coming
from the network. Amongst all examples they have analyzed, we may quote IMDB,
the largest database on movies, which started from a newsgroup of movies fans6,

6 http://www.imdb.com/help/show_leaf?history

 Innovation Processes Revisited by Internet 15

Wikipedia, an on-line encyclopedia done by anybody who want to contribute, the
impact of Internet on social movements [4]. Interestingly, they showed that this
innovation is not unstructured. Various forms of regulation, based on strong
governance rules, exist within those groups. One good example is the Wikipedia
policy on “neutral point of view”7, which, along with the “no original research” and
“Verifiability”, forms the core of Wikipedia regulation8.

4 Society of Interaction and Complexity

Memory is, generally speaking, very short. People tend to think that what they
experience is unique, and never happened in the past. Life is always less unique that
what people think, but more unique than what people would like. Internet obeys to
this rule: it is on one side very deeply rooted in the past, and on the other, it supports a
real disruption.

Just like books, or alphabet, Internet is more than a technology; it is something that
helps mankind to switch from one model of society to another. Just like books were
the basis for the creation of industrial world, just like alphabet was the basis to create
the science and philosophy, Internet is the tool to create a new type of society.

It is usual to name it “communication society”, or “knowledge society”. But this is
not a disruption: people have always been communicating with each others; they have
always created and exchanged knowledge. In Alexandria, in -280, a Greek
mathematician names Aristophanes had computed the diameter of the earth, with an
error of less than 5%. More sophisticated, the precession of equinox was determined
and measured on the basis of 150 years of observation of vernal point. This was done
without optical instrument, without computers. So, what is new?

If we want to summarize what disruption brings Internet, we may consider the
following table.

Table 2. The power of the Network

 Hierarchy Network

Information Vertical Horizontal

Meaning Carried by hierarchy Carried by interactions

Leader Manager Moderator

Decisions Imposed Voted

Structure Designed Auto-organized

7 http://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
8 http://en.wikipedia.org/wiki/Wikipedia:Policies_and_guidelines

16 S. Soudoplatoff

Network is the key to understand the power of Internet. However, what is unique,
in this beginning of third millennium, is a network of 6 billion people, many of them
interconnected, who are also connected to millions of machines. Along those
connections, we have airplanes that can bring us at the other side of the planet within
one day; we have real-time communication that help us being connected to many
people in the same conferences; we have news which are seen by all people at the
same time, and we share our feelings, our knowledge, in an interactive manner, above
the physical distances.

What we need to create a new society is a network to carry knowledge, feelings,
information, sense and sensibility, and everything which has not been discovered yet.
But this network needs regulation mechanisms in order to work; it needs protocols to
be able to grow rapidly, it needs computers to interact, it needs services, knowledge
management tools, peer to peer, databases, etc.

The important issues that we face now are global: Economy, social, industry,
learning, politics, are no longer isolated, and are all part of a single planet.

It is not by chance that Internet is arriving right now. Internet is the tool that we
have constructed, and chosen, to help us manage this new type of society, based on
network and learning. It is a global system, were knowledge appears in the
interactions, and whose main characteristic is complexity.

This is why we propose to call this new society: “Interaction and Complexity”
society. Complexity should be understood as the property of a global system with
many potential interactions. Complexity must not be reduced; we just need to learn
how to deal with it, in a learning experience equivalent to the people who were the
first to learn an alphabet, 3500 years ago. Information technologies, and Internet, help
us to manage this complexity.

Internet, by its constant knowledge experience, will help us understand that, in the
new society, the value is in the network.

References

1. Leonard Kleinrock, MIT: “Information Flow in Large Communication Nets”, 1961,
downloadable on http://www.lk.cs.ucla.edu/LK/Bib/REPORT/PhD/

2. J.C.R. Licklider & W. Clark, MIT: “On-Line Man Computer Communication”, 1962.
3. Michel Gensollen, Sup Telecom: “Creation of Value on the Internet”, downloadable on

www.gensollen.net
4. Christophe Aguiton, France Telecom R&D: “Mapping the Movement”, Development, 2005,

48(2)

Lightweight Causal Cluster Consistency

Anders Gidenstam1, Boris Koldehofe2, Marina Papatriantafilou1,
and Philippas Tsigas1

1 Department of Computer Science and Engineering,
Chalmers University of Technology

{andersg, ptrianta, tsigas}@cs.chalmers.se
2 School of Computer and Communication Science, EPFL

boris.koldehofe@epfl.ch

Abstract. Within an effort for providing a layered architecture of ser-
vices supporting multi-peer collaborative applications, this paper pro-
poses a new type of consistency management aimed for applications
where a large number of processes share a large set of replicated objects.
Many such applications, like peer-to-peer collaborative environments for
training or entertaining purposes, platforms for distributed monitoring
and tuning of networks, rely on a fast propagation of updates on ob-
jects, however they also require a notion of consistent state update. To
cope with these requirements and also ensure scalability, we propose the
cluster consistency model. We also propose a two-layered architecture
for providing cluster consistency. This is a general architecture that can
be applied on top of the standard Internet communication layers and
offers a modular, layered set of services to the applications that need
them. Further, we present a fault-tolerant protocol implementing causal
cluster consistency with predictable reliability, running on top of decen-
tralised probabilistic protocols supporting group communication. Our
experimental study, conducted by implementing and evaluating the two-
layered architecture on top of standard Internet transport services, shows
that the approach scales well, imposes an even load on the system, and
provides high-probability reliability guarantees.

1 Introduction

Many applications like collaborative environments (e.g. [1, 2, 3]) allow a possibly
large set of concurrently joining and leaving processes to share and interact on
a set of common replicated objects. State changes on the objects are distributed
among the processes by update messages (a.k.a. events). Providing the infras-
tructure to support such applications and systems places demands for multi-peer
communication, with guarantees on reliability, latency, consistency and scalabil-
ity, even in the presence of failures and variable connectivity of the peers in
the system. Applications building on such systems would also benefit from an
event delivery service that satisfies the causal order relation, i.e. satisfies the
“happened before” relation as described in [4].

The main focus of earlier research in distributed computing dealing with these
issues has its emphasis in proving feasible, robust solutions for achieving reliable

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 17–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 A. Gidenstam et al.

causal delivery in the occurrence of faults [5, 6, 7, 8], rather than considering
the aforementioned variations in needs and behaviour. Further, since the causal
order semantics require that an event is delivered only after all causally preceding
events have been delivered, the need to always recover lost messages can lead to
long latencies for events, while applications often need short delivery latencies.
Moreover, the latency in large groups can also become large because a causal
reliable delivery service needs to add timestamp information, whose size grows
with the size of the group, to every event.

To improve the latency, optimistic causal order [9, 10] can be suitable for sys-
tems where events are associated with deadlines. In contrast to the causal order
semantics, optimistic causal order only ensures that no events that causally pre-
cede an already delivered event are delivered. Events that have become obsolete
do not need to be delivered and may be dropped. Nevertheless, optimistic causal
order algorithms aim at minimising the number of lost events. In order to deter-
mine the precise causal relation between pairs of events in the system processes
can use vector clocks [11], which also allow detection of missing events and their
origin. However, since the size of the vector timestamps grow linearly with the
number of processes in the system one may need to introduce some bound on
the growing parameter to ensure scalability.

Recent approaches for information dissemination use lightweight probabilis-
tic group communication protocols [12, 13, 14, 15, 16, 17]. These protocols allow
groups to scale to many processes by providing reliability expressed with high
probability. In [16] it is shown that probabilistic group communication protocols
can perform well also in the context of collaborative environments. However, per
se these approaches do not provide any ordering guarantees.

In this paper we propose a consistency management method denoted by causal
cluster consistency, providing optimistic causal delivery of update messages to
a large set of processes. Causal Cluster Consistency takes into account that
for many applications the number of processes which are interested in perform-
ing updates can be low compared to the overall number of processes which are
interested in receiving updates and maintaining replicas of the respective ob-
jects. Therefore, the number of processes that are entitled to perform updates
at the same time is restricted to n, which also corresponds to the maximum
size of the vector clocks used. However, the set of processes entitled to perform
updates is not fixed and may change dynamically. Our proposed approach is
in line with and inspired from recent approaches in multipeer information dis-
semination [12, 13, 14], where the aim is at what is called predictable reliability,
guaranteeing that each event is delivered to all non-faulty destinations with a
high-probability guarantee. We present a two-layer architecture implementing
cluster consistency that can make use of lightweight communication algorithms
which can in turn run using standard Internet transport services. Our method is
also designed to tolerate a bounded number of process failures, by using a com-
bined push-and-pull (recovery) method. We also present an implementation and
experimental evaluation of the proposed method and its potential with respect
to reliability and scalability, by building on recently evolved large-scale and

Lightweight Causal Cluster Consistency 19

lightweight probabilistic group communication protocols. Our implementation
and evaluation have been carried out in a real network, and also in competition
with concurrent network traffic by other users.

Also of relevance and inspiration to this work is the recent research on peer-
to-peer systems and in particular the methods of such structures to share in-
formation in the system (cf. e.g. [18, 19, 20, 21, 22]), as well as a recent position
paper for atomic data access on CAN-based data management [23].

2 Notation and Problem Statement

Let G = {p1, p2, . . .} denote a group of processes, which may dynamically join
and leave, and a set of replicated objects B = {b1, b2, . . .}. Processes maintain
replicas of objects they are interested in. Let B be partitioned into disjoint
clusters C1, C2, . . . with ∪iCi ⊆ B. Further, let C denote a cluster and p a
process in G, then we write also p ∈ C if p is interested in objects of C. Causal
Cluster Consistency allows any processes in C to maintain the state of replicated
objects in C by applying updates in optimistic causal order. However, at most n
processes (n is assumed to be known to all processes in C) may propose updates
to objects in C at the same time. Processes which may propose updates are
called coordinators of C. Let CoreC denote the set of coordinators of C. The
set of coordinators can change dynamically over time. Throughout the paper we
will use the term events when referring to update messages sent or received by
processes in a cluster.

The propagation of events is done by multicast communication. It is not as-
sumed that all processes of a cluster will receive an event which was multicast,
nor does the multicast need to provide any ordering by itself. Any lightweight
probabilistic group communication protocol as appears in the literature
[13, 14, 15] would be suitable. We refer to such protocols as PrCast. PrCast
is assumed to provide the following properties: (i) an event is delivered to all
destinations with high probability; and, (ii) decentralised and lightweight group
membership, i.e. a process can join and leave a multicast group in a decentralised
way and processes do not need to know all members of the group.

Within each cluster we apply vector timestamps of the type used in [24]. Let
the coordinator processes in CoreC be assigned to unique identifiers in {1, . . . , n}
(a process which is assigned to an identifier is also said to own this identifier).
Then, a time stamp t is a vector whose entry t[j] corresponds to the t[j]th event
send by a process that owns index j or a process that owned index j before (this
is because processes may leave and new processes may join CoreC). A vector time
stamp t1 is said to be smaller than vector time stamp t2 if ∀i ∈ {1, . . . , n} t1[i] ≤
t2[i] and ∃i ∈ {1, . . . , n} such that t1[i] < t2[i]. In this case we write t1 < t2.

For any multicast event e, we write te for the corresponding timestamp of
e. Let e1 and e2 denote two multicast events in C, then e1 causally precedes
e2 if te1 < te2 , while e1 and e2 are said to be concurrent if neither te1 < te2

nor te2 < te1 . Further we denote the index owned by the creator of event e as
index (e) and the event id of event e as 〈index (e), te[index (e)]〉.

20 A. Gidenstam et al.

Throughout the paper it is assumed that each process p maintains for each
cluster C a cluster-consistency-tailored logical vector clock (for brevity also re-
ferred to as cct-vector clock) denoted by clockC

p . A cct-vector clock is defined
to consist of a vector time stamp and a sequence number. We write T C

p when re-
ferring to the timestamp and seqC

p when referring to sequence number of clockC
p .

T C
p is the timestamp of the latest delivered event while seqC

p is the sequence
number of the last multicast event performed by p. In Section 3 when describing
the implementation of causal cluster consistency, we explain how these values
are used. Note, whenever we look at a single cluster C at a time, we write for
simplicity clockp, Tp, and seqp instead of clockC

p , T C
p , and seqC

p respectively.

3 Layered Architecture for Optimistic Causal Delivery

This section proposes a layered protocol for achieving optimistic causal delivery.
Here we assume that coordinators of a cluster are assigned to vector entries and
that the coordinators of a cluster know each other. To satisfy these requirements
we choose a decentralised and fault-tolerant cluster-management protocol [25]
which can map a process to a unique identifier in the cct-vector clock in a
decentralised way and can inform all processes in CoreC about this mapping.

Protocol Description
The first of the two layers uses PrCast in order to multicast events inside the
cluster (cf. pseudo-code description Algorithm 1). The second layer, the causal-
ity layer, implements the optimistic causal delivery service. The causal delivery
protocol is inspired by the protocol by Ahamad et. al. [24] and is adapted and
enhanced to provide the optimistic delivery service of the cluster consistency
model and the recovery procedure for events that may be missed due to PrCast.

Each process in a cluster interested in observing events in optimistic causal
order (which is always true for a coordinator), maintains a queue of events de-
noted by HC

p . For any arriving event e one can determine from T C
p and the

event’s timestamp te whether there exist any events which (i) causally precede e,
(ii) have not been delivered, and (iii) could still be deliverable according to the
optimistic causal order property. More precisely we define this set of not yet
delivered deliverable events as

to deliver before(e) = {e′ | te′ < te ∧ ¬(te′ < T C
p)}

and their event ids, which can be used for recovery, can be calculated as follows

to deliver before ids(e)=
{〈i, j〉 | (∀i �= index (e) . T C

p [i]<j≤ te[i]) ∨ (i= index (e) ∧ T C
p [i] < j < te[i])}.

If there exist any such events, e will be enqueued in HC
p until it becomes ob-

solete (prior to that process p may “pull” missing events — see below). Oth-
erwise, p delivers e to the application. When a process p delivers an event

Lightweight Causal Cluster Consistency 21

e referring to cluster C, the cct-vector clock clockC
p is updated by setting

∀i T C
p [i] = max(te[i], T C

p [i]). Process p also checks whether any events in Hp

or recovered events now can be dequeued and delivered. Before a coordinator p
in CoreC , owning the jth vector entry, multicasts an event it updates clockC

p by
incrementing seqC

p by one. The event is then stamped with a vector timestamp
t such that t[i] = T p

C [i] for i �= j and t[j] = seqC
p .

Since PrCast delivers events with high probability, a process may need to
recover some events. The recovery procedure, which is invoked when an event
e in Hp is close to become obsolete, sends recovery messages for the missing
events that precede e. The time before e becomes obsolete depends the amount
of time since the start of the dissemination of e, and is assumed to be larger
than the duration of a PrCast (which is estimated by the number of hops that
an event needs to reach all destinations with w.h.p.) and the time it takes to
send a recovery message and receive an acknowledgement. At the time e ∈ Hp

becomes obsolete, p delivers all recovered events and events in Hp that causally
precede e and e in their causal order. A simple recovery method is to contact the
sender of the missing event. For this purpose the sender has a recovery buffer
which stores events until no more recovery messages are expected (this is e.g. the
case if ∀i te[i] < T C

p [i]). Below we will present and analyse a another recovery
method that enhances the throughput and the fault-tolerance.

Properties of the Protocol. The PrCast protocol provides a delivery service that
guarantees that an event will reach all its destinations with high probability,
i.e. PrCast can achieve high message stability. When an event needs recovery,
the number of processes that did not receive the event is expected to be low.
Thus a process multicasting an event is expected to receive a low number of
recovery messages. If there are no process, link or timing failures, reliable point to
point communication succeeds in recovering all missing events, and thus provide
causal order without any message loss. The following lemma is straightforward,
following the analysis in [24].

Lemma 1. An execution of the two-layer protocol guarantees causal delivery of
all events disseminated to a cluster if neither processes nor links are slow or fail.

Event Recovery Procedure, Fault-Tolerance and Throughput
The throughput and fault-tolerance of the protocol can be increased by intro-
ducing redundancy in the recovery protocol. All processes could be required to
keep a history of some of the observed events, so that a process only needs to
contact a fixed number of other processes to recover an event. Further, such re-
dundancy could help the recovery of a failed process. As it is desirable to bound
the size of this buffer we analyse the recovery buffer size and number of processes
to contact such that the recovery succeeds with high probability.

Following [15], we describe a model suitable to determine the probability for
availability of events that are deliverable and may need recovery in an arbitrary
system consisting of a cluster C of n processes that communicate using the Two-
Layer protocol. Let C denote this system and T denote the time determined by

22 A. Gidenstam et al.

Algorithm 1. Two-Layer protocol
VAR

Hp: set of received events that can not be delivered yet
R: set of recovered events that can not be delivered yet
B: fixed size recovery buffer with FIFO replacement.

On p creates e
te := T C

p ; te[p] := seqC
p ; seqC

p := seqC
p + 1 /* Create timestamp te */

PrCast(〈e, te〉)
Insert e into recovery buffer B

On p receives 〈e, te〉
Insert e into recovery buffer B
if e can be delivered then

deliver(e)
for all e′ ∈ Hp ∪ R that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
delay(e, time to terminate)

On timeout(e, time to terminate)
for all eid ∈ to deliver before ids(e) not in Hp ∪ R and eid not already under recovery

send(〈RECOVER, eid〉) to source(eid) or to k arbitrary processes in cluster
delay(e, time to recover)

On timeout(e, time to recover)
for all e′ ∈ to deliver before(e) ∩ (Hp ∪ R) that can be delivered

deliver(e′)
deliver(e)
for all e′ ∈ Hp that can be delivered

deliver(e′)
On p receives 〈RECOVER, source(e′), eid〉

if p has e with identifier eid in its buffer then
respond(〈ACKRECOVER, e, et〉)

On p receives 〈ACKRECOVER, e, et〉
Insert e into recovery buffer
if e can be delivered then

deliver(e)
for all e′ ∈ R ∪ Hp that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
R := R ∪ {e}

On deliver(e)
∀i T C

p [i] := max(te[i], T C
p [i]) /* Update T C

p */
Remove e from R and Hp

Deliver e to the application

the number of rounds an event stays at most in C. Note the similarity of the
buffer system to a single-server queueing system, where new events are admitted
to the queue as a random process. However, unlike common queueing systems,
the service time (time needed for all processes in C to get the event using the
layered protocol) in this model depends on the arrival times of events. The service
time is such that every event stays at least as long in the queue as it needs to
stay in the buffer of C in order to guarantee delivery/recovery (i.e. whether the
queue is stable is not an issue here). Below we estimate the probability that the
length of the queue exceeds the choice of the length for the recovery buffer of C.
If ai denotes the arrival time of an event ei, the “server” processes each event
at time si = ai + T . Observe that if the length of the buffer in C is greater
than the maximum length of the queue within the time interval [ai, si] then C
can safely deliver ei. Consider [ta, ts] denoting an interval of length T and the
random variable Xi,j denoting the event that at time ta + i process j inserts a

Lightweight Causal Cluster Consistency 23

new event in the system. Further, assume that all Xi,j occur independently, and
that Pr[Xi,j = 1] = p and Pr[Xi,j = 0] = 1−p. The number of admitted events
in the system can be represented by the random variable X :=

∑n
j=1

∑T
i=1 Xi,j ,

hence the random process describing the arrival rate of new events is a binomial
distribution and the expected number of events in the queue in an arbitrary time
interval [ta, ts] equals E[X] = npT. Clearly, the length of the recovery buffer must
be at least as large as E[X], or we are expected to encounter a large number
of events that cannot be recovered. Now, using the Chernoff bound [15, 26], we
bound the buffer size so that the probability of an event that needs recovery not
to be present in the recovery buffer of any arbitrary process becomes low.

Theorem 1. Let e be an event admitted to a system C executing the two-layered
protocol, where each event is required to stay in C for T rounds. Each of the n
processes in the system admits a new event to C in a round with probability p.
Then C can guarantee the availability of e in the recovery buffer of an arbitrary
process with probability strictly greater than 1 − (

e
4

)npT if the size of the buffer
is chosen greater than or equal to 2npT .

Due to space constraints, please see our technical report [27] for the proofs.
To estimate T , we can use the estimated duration of a PrCast, e.g. as in [15].
Let PrCastTime denote this time. An event e is likely to be needed in C for
(i) PrCastTime rounds (to be delivered to all processes with high probability);
(ii) plus PrCastTime rounds, if missed, to be detected as missing by the re-
ception of a causally related event (note that this is relevant under high load,
since in low loads PrCast algorithms are even more reliable); (iii) plus the time
time to terminate+ time to recover spent before and after requesting recovery.

Further, since processes may fail, a process that needs to recover some event(s)
should contact a number of other processes to guarantee recovery with high
probability. Assume that processes fail independently with probability pf and
let Xf be the random variable denoting the number of faulty processes in the
system. Then E[Xf] = pfn. By applying the Chernoff bound as in Theorem 1
we get:

Lemma 2. If, in a system of n processes where each one may fail independently
with probability pf , we consider an arbitrary process subset of size greater than
or equal to 2npf , with probability strictly greater than 1− (

e
4

)npf there will be at
least one non-failed process in the subset.

This implies that if a process requests recovery from R = 2pfn processes then
w.h.p. there will be at least one non-faulty to reply.

Theorem 2. In a system of n processes where each one may fail independently
with probability pf ≤ k/(2n) for fixed k, an arbitrary process that needs to recover
events according to the Two-Layer protocol, will get a reply with high probability
if it requests recovery from k processes.

Note that requesting recovery only once and not propagating the recovery mes-
sages is good because in cases of high loss due to networking problems we do not

24 A. Gidenstam et al.

flood the network with recovery messages. Compared to recovery by asking the
originator of an event, this method may need k times more recovery messages.
However, the advantages are tolerance of failures and process departures, as well
as distributing the load of the recovery in the system.

Regarding replacement of events in the recovery buffer, the simplest option is
FIFO replacement. Another option is an aging scheme, e.g. based on the number
of hops the event has made. As shown in [15], an aging scheme may improve per-
formance from the reliability point of view. However, to employ such a scheme
here we need to sacrifice the separation between the consistency layer and the un-
derlying dissemination layer to access this information. Instead, note that using
a dissemination algorithm such as the Estimated-Time-To-Terminate-Balls-and-
bins(ETTB)-gossip algorithm [15] that uses an aging method to remove events
from process buffers and guarantees very good message stability, implies that
the reliability is improved since fewer processes may need to recover events.

4 Experimental Evaluation

In this section we investigate the scalability of causal cluster consistency and the
reliability and throughput effects of the optimistic causality layer in the Two-
Layer protocol. We refer to a message/event as lost if it was not received or
could not be delivered without violating optimistic causal order.

The evaluation of the Two-Layer protocol was done on 125 networked comput-
ers at Chalmers University of Technology. The computers were Sun Ultra 10 and
Blade workstations running Solaris 9 and PC’s running Linux distributed over
a few different subnetworks of the university network. The average round-trip-
time for a 4KB IP-ping message was between 1ms and 5ms. As we did not have
exclusive access to the computers and the network, other users might potentially
have made intensive use of the network concurrently with the experiments.

The Two-Layer protocol is implemented in an object oriented, modular man-
ner in C++. The implementation of the causality layer follows the description in
Section 3 and can be used with several group communication objects within our
framework. Our PrCast is the ETTB-dissemination algorithm described in [15]
together with the membership algorithm of lpbcast [13]. TCP was used as mes-
sage transport (UDP is also supported). Multi-threading allows a process to send
its gossip messages in parallel and a timeout ensures that the communication
round has approximately the same duration for all processes.

Our first experiment evaluates how the number of coordinators affect through-
put, latency and message size. In our test application a process acts either as
a coordinator, which produces a new event with probability p in each PrCast
round, or as an ordinary cluster member. The product of the number of coor-
dinators and p was kept constant (at 6). To focus on the performance of the
causality layer the PrCast was configured to satisfy the goal of each event reach-
ing 250 processes w.h.p. (the fan-out was 4 and the event termination time was
5 hops). PrCast was allowed to know all members to avoid side effects of the
membership scheme. The maximum number of events transported in each gossip

Lightweight Causal Cluster Consistency 25

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120

M
es

sa
ge

s
pe

r
se

co
nd

Processes

Throughput, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(a) Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 40 60 80 100 120

D
el

ay
 in

 m
s

Processes

Latency, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(b) Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

Si
ze

 in
 b

yt
es

Processes

Message size, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(c) Message size

Fig. 1. Throughput and latency with in-
creasing number of cluster members

 0

 200

 400

 600

 800

 1000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

D
el

ay
 in

 m
s

Probability to create a new event

Latency

Caual layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(a) Latency

 0

 2

 4

 6

 8

 10

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Pe
rc

en
ta

ge
 o

f
kn

ow
n

ev
en

ts
 lo

st

Probability to create a new event

Event loss

Caual layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(b) Message loss

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Pe
rc

en
t o

f
re

co
ve

ry
 a

tte
m

pt
s

su
cc

es
sf

ul
l

Probability to create a new event

Event recovery success

Caual layer with R4 recovery
Causal layer with R1 recovery

(c) Percentage of successful recovery attempts

Fig. 2. Event latency, loss and recovery be-
haviour under varying load with and with-
out the causality layer

message was 20. The size of the history buffer was 40 events, which according
to [15] is high enough to prevent w.h.p. PrCast from delivering the same event
twice. The duration of each PrCast round was tuned so that all experiments had
approximately the same rate of TCP connection failures (namely 0.2%). Fig. 1
compares three instances of the Two-Layer protocol: the full-updater instance
where all processes act as coordinators, the 5-updater and the 25-updater in-
stances with 5 and 25 coordinators, respectively. The causality layer used the

26 A. Gidenstam et al.

first recovery method, described in Section 3. The results show the impact of
the size of the vector clock on the overall message size and throughput. For the
protocols using a constant number of coordinators message sizes even decreased
slightly with growing group size since the dissemination distributes the load of
forwarding events better then, i.e. for large groups a smaller percentage of pro-
cesses performs work on an event during the initial gossip rounds. However, for
the full updater protocol messages grow larger with the number of coordinators
which influences the observed latency and throughput. For growing group size
the protocols with a fixed number of coordinators experience only a logarith-
mic increase in message delay and throughput remains constant while for the
full-updater protocol latency increases linearly and throughput decreases.

The second experiment studies the effects of the causality layer and the recov-
ery schemes in the Two-Layer protocol. Fig. 2 compares the gossip protocol and
the Two-Layer protocol with and without recovery. The recovery is done in two
ways, both described in Section 3: (i) from the originator (marked “R1 recov-
ery”) and (ii) from k arbitrary processes (marked “R4 recovery” as the recovery
fan-out k was 4). The recovery buffer size follows the analysis in Section 3, with
the timeout-periods set to the number of rounds of the PrCast. Unlike the first
experiment, the number of coordinators and processes was fixed to 25; instead
varying values of p were used, to study the behaviour of the causality layer under
varying load. Larger p values imply increased load in the system; at the right
edge of the diagrams approximately n/2 new events are multicast in each round.
As the load increases, more events are reordered by the dissemination layer and
message losses begin to occur due to buffer overflows, thus putting the causality
layer protocols under stress. The results in Fig. 2(b) show that the causality layer
significantly reduces the amount of lost (ordered) events, in particular when the
number of events disseminated in the system is high. With the recovery schemes
almost all events could be delivered in optimistic causal order. With increasing
load latency grows only slowly (cf. Fig. 2(a)), thus manifesting scalability. The
causality layer adds a small overhead by delaying events in order to respect the
causal order. The recovery schemes do not add much overhead with respect to
latency, while they significantly reduce the number of lost events. At higher loads
the recovery schemes even improve latency since by recovering missing events
causally subsequent events in Hp can be delivered before they time out. Fig. 2(c)
shows the success rate for the recovery attempts. The number of recovery at-
tempts increase as the load in the system increases, when the load is low very few
events need recovery (cf. the event loss without the causality layer in Fig. 2(b)).
There are three likely causes for a recovery to fail: (i) the reply arrives too late;
(ii) the process(es) asked did not have the event; and (iii) the reply or request(s)
messages were lost. The unexpectedly low success rate during low load for the
R4 method could be because a PrCast may reach very few processes when a
gossip message is lost early in the propagation of an event. Also note that as the
load is low the number of missing events and recovery attempts is very small.
However, as load and the number of recovery attempts increase the success rate
converges towards the predicted outcome.

Lightweight Causal Cluster Consistency 27

5 Discussion and Future Work

We have proposed lightweight causal cluster consistency, a hierarchical layer-
based structure for multi-peer collaborative applications. This is a general archi-
tecture, can be applied on top of the standard Internet transport-layer services,
and offers a layered set of services to the applications that need them.

We also presented a two-layer protocol for causal cluster consistency running
on top of decentralised probabilistic protocols supporting group communication.
Our experimental study, conducted by implementing and evaluating the pro-
posed architecture as a two-layered protocol that uses standard Internet trans-
port communication, shows that the approach scales well, imposes an even load
on the system, and provides high-probability reliability guarantees.

Future work include complementing this service architecture with other con-
sistency models such as total order delivery with respect to objects. Object
ownership and caching are other topics that is worth studying.

References

1. Miller, D.C., Thorpe, J.A.: SIMNET:the advent of simulator networking. In: Proc.
of the IEEE. Volume 8 of 83. (1995) 1114–1123

2. Greenhalgh, C., Benford, S.: A multicast network architecture for large scale collab-
orative virtual environments. In: Proc. of the 2nd European Conf. on Multimedia
Applications, Services and Techniques. Volume 1242 of LNCS., Springer-Verlag
(1997) 113–128

3. Carlsson, C., Hagsand, O.: DIVE - a multi-user virtual reality system. In: Proc.
of the IEEE Annual Int. Symp. (1993) 394–400

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:
Communications of the ACM. Volume 7 of 21. (1978) 558–565

5. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failure.
ACM Transactions on Computer Systems 5 (1987) 47–76

6. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Transactions on Computer Systems 9 (1991) 272–314

7. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Information Processing Letters 39 (1991) 343–350

8. Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed
Computing 11 (1998) 91–111

9. Baldoni, R., Prakash, R., Raynal, M., Singhal, M.: Efficient Δ-causal broadcasting.
Int. Journal of Computer Systems Science and Engineering 13 (1998) 263–269

10. Rodrigues, L., Baldoni, R., Anceaume, E., Raynal, M.: Deadline-constrained causal
order. In: Proc. of the 3rd IEEE Int. Symp. on Object-oriented Real-time dis-
tributed Computing. (2000)

11. Mattern, F.: Virtual time and global states of distributed systems. In: Proc. of
the Int. Workshop on Parallel and Distributed Algorithms. (1989) 215–226

12. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Transactions on Computer Systems 17 (1999) 41–88

13. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov,
P.: Lightweight probabilistic broadcast. In: Proc. of the Int. Conf. on Dependable
Systems and Networks. (2001) 443–452

28 A. Gidenstam et al.

14. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Scamp: Peer-to-peer lightweight
membership service for large-scale group communication. In: Proc. of the 3rd Int.
COST264 Workshop. Volume 2233 of LNCS., Springer-Verlag (2001) 44–55

15. Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication
protocols. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, IEEE
(2003) 76–85

16. Pereira, J., Rodrigues, L., Monteiro, M., Kermarrec, A.M.: NEEM: Network-
friendly epidemic multicast. In: Proc. of the 22nd Symp. on Reliable Distributed
Systems, IEEE (2003) 15–24

17. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: Proc. of the
5th IEEE Int. Conf. on Dependable Systems and Networks. (2004) 233–242

18. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proc. of the ACM
SIGCOMM 2001 Conf., ACM Press (2001) 149–160

19. Alima, L.O., Ghodsi, A., Brand, P., Haridi, S.: Multicast in DKS(N; k; f) overlay
networks. In: Proc. of the 7th Int. Conf. on Principles of Distributed Systems.
Volume 3144 of LNCS., Springer-Verlag (2003) 83–95

20. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM Computer Communication Review.
Volume 31. (2001) 161–172

21. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Proc. of the 18th IFIP/ACM Int.
Conf. on Distributed Systems Platforms (Middleware). Volume 2218 of LNCS.,
Springer-Verlag (2001)

22. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22 (2004) 41–53

23. Lynch, N., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash
tables. In: Proc. of the 1st Int. Workshop on Peer-to-Peer Systems. Volume 2429
of LNCS., Springer-Verlag (2002) 295–305

24. Ahamad, M., Neiger, G., Kohli, P., Burns, J.E., Hutto, P.W.: Casual memory:
Definitions, implementation and programming. Distributed Computing 9 (1995)
37–49

25. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Dynamic and fault-
tolerant cluster management. In: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer
Computing, IEEE (2005)

26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

27. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Lightweight causal
cluster consistency. Technical Report 2005-09, Computer Science and Engineering,
Chalmers University of Technology (2005)

Distributed Calculation of PageRank Using
Strongly Connected Components

Michael Brinkmeier

Institute for Technical and Theoretical Computer Science,
Technical University of Ilmenau, Germany

mbrinkme@tu-ilmenau.de

Abstract. We provide an approach to distribute the calculation of
PageRank, by splitting the graph into its strongly connected compo-
nents. As we prove, the global ranking may be calculated componentwise,
as long as the rankings of pages directly linking to the current compo-
nent are already known. Depending on the structure of the WWW, this
approach approach may be used to calculate the ranking on several com-
ponents in parallel, and allows to split the problem intio significantly
small subproblems.

1 Introduction

The World Wide Web is one of the most rapidly developing and perhaps the
largest source of information. Due to its de-central nature the access to the
relevant and needed information becomes increasingly difficult. Due to the pure
amount of content, more and more search engines, indexes and archives try
to harvest the information implicit in the link structure to improve speed and
quality of search. One of the tools in this field is the ranking of web pages
according to their relevance. PageRank, one of the most prominent systems, was
presented by Page, Brin et al. in [4, 5]. It is an essential part of Google’s ranking
scheme. Together with content based measures, this purely link based value is
the basis of the order of search results produced by this widely used and accepted
search engine.

Since the ranking seems to be quite successful (if considering the number of
users and their confidence in the results), the theoretical properties of PageRank
raise some interesting questions and may allow a significant speed-up of its cal-
culation. Usually PageRank is viewed as a Markov chain (e.g. [5, 12, 8, 10, 3]),
even though its original definition does not constitute one, as pointed out by
several authors. But if sinks, i.e. nodes without outgoing edges, are removed or
connected to all other nodes, one obtains a Markov chain producing the same
ranking as the original definition [3]. More general, PageRank is usually cal-
culated by iteratively multiplying a (ranking) vector to a form of normalized
adjacency matrix of the graph. Standard results of linear algebra and numerical
mathematics show, that this iteration converges to the principal eigenvector of
the normalized adjacency matrix.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 29–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 M. Brinkmeier

Experiments and theoretical results prove that only a small number of itera-
tions (compared to the size of the WWW) are needed to obtain a good approx-
imation [5, 3, 6]. But nonetheless, the size of the graph usually requires the use
of external memory, significantly increasing the required time.

In the literature some approaches can be found, suggesting parallelized or
distributed calculation of PageRank. In [9] T. Haveliwala suggests a way to
do one step of the iteration blockwise, reducing the number of accesses to the
external memory. But this approach still requires the execution of each step of
the iteration on the whole graph.

In [12] Kamvar et al. suggested to use the natural structure of the WWW
for a faster calculation of PageRank. The web is split into local subwebs (for
example domains), which are ranked independently. Then in a second step the
net of subwebs is ranked. The resulting local and global rankings are combined to
obtain an approximation of PageRank, which in turn is used as a starting vector
for the standard iteration, increasing the rate of convergence. A similar approach
is used in [14] by Wang and DeWitt, but instead of using the combined vectors
as starting vector for the iteration, they use the global rankings (or ServerRank,
as they call it) to refine the local rankings.

The approach of distributing the calculation of PageRank presented in this
paper is more in the tradition of [2]. There Avrachenkov and Litvak proof that
the global PageRank may be calculated from the local PageRanks on the weakly
connected components. This allows to iterate each component seperateley and
then combine them to obtain the global PageRank. But unfortunately, as former
experiments show [7], there exists one weak giant component containing about
91% of the vertices, reducing the size of the main problem by about 9%.

Similar to Arasu et al. in [1], we go a step further and prove that the iteration
may be executed separately on each strong connected component, as long as
we adhere to the structure of the interconnections of the strong components. In
detail this means, that we have to calculate the rankings inside a strong com-
ponent before the rankings inside other components, to which it links, directly
or indirectly. As [7] and additional experiments indicate, this reduces the size of
the largest subproblem to about 28% ([7]) or 46% (sec. 4), and the remaining
72%, resp. 54% consist of much smaller strong components.

2 PageRank and Strong Components

2.1 Notations

Let D = (V, E) be a directed multigraph with vertex set V and edge set E. For
each vertex v we denote the out-degree of v by out(v) and the in-degree by in(v).
If there exists an edge from u to v we write u → v, and u �→ v otherwise.

2.2 PageRank

In [4] and [5] Page, Brin et al. described an approach estimating the importance
of a web page, based purely on the link structure of the world wide web. Their

Distributed Calculation of PageRank Using Strongly Connected Components 31

proposed score PageRank was based on the assumption, that a document spreads
its relevance equally to all documents it links to.

To ‘generate’ rank a fixed value e(u), the personalization value, is given for
each vertex u, and (1 − d)e(u) is added to the rank, resulting in:

PageRank(u) = d
∑

v|v→u

PageRank(v)
out(v)

+ (1 − d)e(u).1 (1)

Using the normalized link matrix of the web, i.e. the matrix M = (muv) with
muv = 1

out(u) if there exists a link from u to v and 0 otherwise, this equation
may be reformulated as the following linear system:

(I − dMT)PageRank = (1 − d)e, (2)

with I the unit matrix. Under certain circumstances2 the equation may be solved
using the iteration

ri+1 = dMT ri + (1 − d)e, (3)

which corresponds to the iterative algorithm suggested by Page and Brin3.
Translated to the underlying graph the iteration leads to the following equa-

tion and algorithm (1).

ri+1(u) = d
∑

v|v→u

ri(v)
out(v)

+ (1 − d)e(u). (4)

The starting vector r0 can be chosen arbitrarily.
Page and Brin suggested an interpretation of the iteration in terms of a ran-

dom surfer, who occasionally jumps or teleports to another page instead of fol-
lowing a link, leading to a Markov model. But unfortunately the normalized
adjacency matrix M is not stochastic, since sinks, ie. vertices without outgoing
edges, have columns summing to 0. Usually this problem is solved by adding
virtual edges from each sink to all other vertices (including the sink), leading
to a proper Markov model (see eg. [3, 9, 10]). Results of the theory of Markov
models then ensure, that the iteration converges to a unique limit.

In [6] an alternative approach is used. There, PageRank is described as a
power-series over the damping factor d, whose coefficients are probabilities of
walks of a random surfer. In detail, it was proved that

PageRank(u) =
∞∑

l=0

dl(1 − d)
∑

v

al(v, u)e(v) (5)

1 In fact, in the original paper [4] the factor with which the personalization is multi-
plied, was given as d. But in later publications it was replaced by (1− d). As we will
see this influences the absolute values, but not on the ranking.

2 The spectral radius of the matrix I − dMT has to be less than 1.
3 Since they normalized the ranking vector, they could describe PageRank as an eigen-

vector of a specific matrix.

32 M. Brinkmeier

with

a0(v, u) =

{
1 if v = u

0 otherwise
and al+1(v, u) =

∑
w|w→u

al(v, w)
out(w)

. (6)

Using a slightly different notation, this allows another description as a sum
over paths.

PageRank(u) =
∑

v

e(v)
∑

π : v
∗→u

P (π)(1 − d)dl(π). (7)

where P (π) is defined inductively over the length l of the paths,

P (π) =

⎧⎪⎨
⎪⎩

0 if l = 0 and u �= v

1 if l = 0 and u = v
P (π′)
out(w) if l > 0 and π : u

π′→ w → v,

and π is the path π′ from u to w followed by the edge (x, v).
This formulation of PageRank allows an alternative description in terms of a

random surfer. Instead of choosing the start vertex uniformly, the personalization
value e(v) is used as probability for v4. at each step the surfer decides to either
continue its walk with probability d, or to stop surfing (probability 1 − d). If
she decides to continue, two situations can occur. In the first case, the current
vertex has outgoing links, and the surfer randomly chooses one of them to follow.
In the second case, the vertex has no outgoing link. In this situation the surfer
becomes ‘annoyed’ and stops surfing.

In this setting PageRank(v) is the probability that the surfer ends his walk
voluntarily in vertex v. The probability that the surfer becomes annoyed causes
a loss of ranking, ie.

∑
PageRank(v) < 1, but the resulting ranking is equivalent

(cmp. [6, Prop. 2.9]).

2.3 Strong Components

An obvious consequence of equation 7 is the simple and intuitive fact, that the
ranking of a vertex u is only influenced by that of another vertex v, if there
exists a path from v to u, ie. if al(v, u) �= 0 for some l ≥ N. In [6] this was
already exploited for sinks and sources in the underlying graph. In this paper
we go further.

A strong component C of a directed multigraph D = (V, E) is a maximal
subgraph of D, such that for two arbitrary vertices u and v of C there exists a
path from u to v and vice versa. The next theorem states that the PageRank of
an arbitrary vertex may be obtained by an iteration involving only the vertices
of its strong component, assumed that the PageRanks of all vertices not in the
component, but directly linking to vertices in the component, are known.

4 We assume e(v) ≥ 0 for each v ∈ V and ‖e‖1 = 1.

Distributed Calculation of PageRank Using Strongly Connected Components 33

Theorem 1. Let D = (V, E) be a directed multigraph, and C one of its strong
components. Then for each v ∈ V the sequence r(i)(v) with r(0)(v) = (1 − d)e(v)
and

r(i+1)(v) = d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(v)

converges to PageRank(v).

Proof. If the sequence converges, the limit obviously has to be PageRank(u),
because it has to satisfy the fixpoint condition (1), whose solution is unique
(cf. [6, Thm 2.8]). Hence it remains to prove the convergence. This is done by
comparison with the partial sums

PageRank(i)(v) =
i∑

l=0

(1 − d)dl
∑
u∈V

al(u, v)e(u) ≤ PageRank(v),

which form an increasing sequence converging to PageRank(v).
Obviously, we have PageRank(v) ≥ r(0)(v) = PageRank(0)(v). Now assume

PageRank(v) ≥ r(i)(v) ≥ PageRank(i)(v)

for all v ∈ C and i ≥ 0. Then we have

PageRank(v) = d
∑

u|u→v

PageRank(u)
out(u)

+ (1 − d)e(u)

= d
∑

u∈C|u→v

PageRank(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(u)

≥ d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(v)

= r(i+1)(v)

≥ d
∑

u|u→v

PageRank(i)(u)
out(u)

+ (1 − d)e(v)

≥ PageRank(i+1)(v).

Since the partial sums form an increasing sequence, converging to PageRank, the
r(i)(v) have to have the same limit.

In the preceeding proof we neglected the question, wether the iteration is well-
defined. But the answer to this question is quite simple and obvious. We iterate
only on one strong component C of the graph. For each vertex v in this com-
ponent, we require values for each predecessor u. But there are two types of
predecessors. The first is itself a member of C and hence is included in the iter-
ation. The second is not a member of C and hence its PageRank is assumed to
be known.

34 M. Brinkmeier

At the first look, the result only allows us to iterate on a strong component
C, if the exact PageRanks for the predecessors are known. But using the same
estimations, one can prove the following result.

Theorem 2. Let D = (V, E) be a directed multigraph, and C one of the strong
components of D and for each vertex u directly linking to at least one vertex in
C, let r(u) be an approximation of PageRank(u) satisfying

PageRank(u) ≥ r(u) ≥ PageRank(j)(u)

for some j ≥ 0. For v ∈ C define r(i)(v) by r(0)(v) := (1 − d)e(v) and

r(i+1)(v) = d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

r(u)
out(u)

+ (1 − d)e(v).

Then PageRank() ≥ r(j)(v) ≥ PageRank(j)(v).

Proof. Use the same sequence of inequalities as for theorem 1, but replace r(u)
for PageRank(u), where appropriate.

This result allows us to approximate PageRank componentwise, without losing
precision, as long as the number of iterations is the same for each component.
In fact, we may even obtain a better approximation, than by iterating the whole
graph. Unfortunately, the quality of the approximations can not be guaranteed, if
the common criteria for the termination of the iteration found in the literature
is used. Usually the iteration is repeated until the L1-norm of the difference
between r(i) and r(i+1), ie. the sum

∑
v∈V |r(i)(v) − r(i+1)(v)|, is below a given

threshold. This approach does not seem to be appropriate here, if this would
lead to more iterations for a given strong component, than for its preceeding
components, because the usage of the earlier calculated approximations of the
rankings causes a bias for the newly calculated rankings. But if the number of
iterations is independently fixed, we may even guarantee the quality of the global
approximation, as shown in [6]. There it was proved that

‖PageRank−PageRank(i)‖1 =
∑
v∈V

|PageRank(v)−PageRank(i)(v)|≤(1−d)di‖e‖1,

if (1 − d)e is the initial ranking. Since PageRank(v) ≥ r(i)(v) ≥ PageRank(i)(v),
this implies

‖PageRank− r(i)‖1 ≤ (1 − d)di‖e‖1.

If ‖e‖1 = 1 this implies that the error is less than ε after more than ε
1−d ln d

iterations.
Since the rankings for all vertices u �∈ C linking to vertices in the strong

component C are constant, their influence may be added to the initial ranking
vector e. In this way, only the edges inside the strong component and the global
out degrees have to be known. The edges into the component can be neglected.

Distributed Calculation of PageRank Using Strongly Connected Components 35

Hence we may iterate on the induced subgraph with global out degrees (not with
the outdegrees in the subgraph) using the initial rankings

e′(v) := e(v) +
1

1 − d

∑
u�∈C|u→v

r(u)
out(u)

.

The factor 1/(1 − d) is required, because in the iteration the personalization
vector is multiplied by (1 − d).

3 Distributing PageRank

The observations made above, allow us to calculate the PageRanks of all pages
componentwise. Obviously, this has no effect when the graph is strongly con-
nected. But as measurements of the Webgraph indicate, the World Wide Web
consists of a lot of strong components, whose size follows a so-called Power-Law
[7]. We will go further into detail about this in section 4.

Since the ranks of predecessors of a strong component C are required for the
iteration, we have to ensure that these are known if we start the iteration on
C. Hence we have to order the strong components appropriately. This step is
discussed in the following.

Let D = (V, E) be a directed multigraph. For each vertex v of D we denote the
strong component of D containing v by [v]. The strong component graph SC(D)
of D is obtained by contracting each strong component into one vertex, deleting
self-loops and merging parallel edges obtained by this procedure. In other words,
the set of vertices of SC(D) is the set {[v] | v ∈ V } of strong components of D,
and there exists an edge from component [u] to [v], if there exists an edge from
u to v in D.

Obviously, the strong component graph SC(D) is acyclic, since otherwise
one strong component of D is distributed over several vertices of SC(D) (at
least the ones on the cycle). As a consequence, the calculation of PageRank
can be distributed componentwise. We simply have to make sure, that before
the rankings inside a strong component [v] are calculated, the rankings in all
preceeding strong components are already known.

First, the strong components may be computed using an algorithm of Tarjan
[13], requiring O(|V |+ |M |) time, up to a constant the same time as an iteration
step requires.

Following that, the rankings may be computed componentwise. We require
a queue Q and one integer counter c([v]) for each strong component [v]. This
counter is initially set to the indegree of [v] in SC(D), and counts the number of
preceeding strong components not completed yet. If we guarantee, that c([v]) = 0
for every [v] in the queue, we may simply extract one strong component from Q
and calculate its rankings.

Obviously all source components, ie. those without incoming links, have c([v])
initially set to 0 and may be inserted into Q. If later, a strong component [v]
is fetched from the queue and its rankings are computed, the counters of all

36 M. Brinkmeier

Algorithm 1. Componentwise calculation of PageRank
forall [v] ∈ SC(D) do

c([v]) ← in([v]);
if in([v]) = 0 then Q.append([v]);

end
while Q is not empty do

[v] ← Q.get();
Calculate the Rankings of vertices in [v];
forall [u] with [v] → [u] do

c([v]) ← c([v]) − 1;
if c([v]) = 0 then Q.append([v]);

end
end

successors can be decreased by one, and if one counter reaches 0 the strong
component is inserted into Q. This leads to algorithm 1.

3.1 The System

If Algorithm 1 is executed on a single machine, the main gain is the reduction
of the size of the graphs on which the iteration has to be done. This may enable
the calculation in local memory, if the strong components are small enough.
Fortunately, the topology of the WWW allows a more efficient calculation, as
discussed in section 4, using more machines.

If a strong component is extracted from the queue, its rankings may be cal-
culated completely independent from all other components in the queue at the
same moment. Hence we may extract as many components as we have free ma-
chines, if possible. This allows us to speed up the complete calculation, if the
topology of the strong component graph is good enough.

We assume that there exists a data storage system D storing the graph,
the strong component graph and the rankings. Furthermore we assume, that
this depot can be accessed by several clients C1, . . . , Cn in parallel, without a
significant loss of performance. In addition there exists a server S, storing the
strong component graph and handling the queue.

The clients C1, . . . , Cn may request an id of a strong component from the
server, ready for calculation. The client retrieves the necessary data from D, ie.
the strong component and the rankings of all vertices linking into this compo-
nent, executes the calculation, stores the results in D and sends s message to S,
indicating the completion of the calculation for the component. Following that,
the server updates the queue and, if it is empty, stops the whole process.

4 Measurements

The measurements and experiments described in this section were conducted on
the WebBase dataset from [16] constructed from the WebBase crawl of 2001 [15].

Distributed Calculation of PageRank Using Strongly Connected Components 37

D

C1

Retrieve subgraph
Store rankings

Fetch Component

...

Cn

S

Fig. 1. A schematic sketch of the system for the distributed calculation of PageRank

Table 1. Basic numbers about the WebBase Dataset

Number of vertices 118 142 115
Number of edges 1 019 903 190
Number of strong components 41 126 852
Average size of strong components ∼ 2.8726
Largest strong component 53 891 939
Second largest strong component 9 428
Third largest strong component 5 925
Number of strong components of size 1 39 843 421
Number of strong components of size 2 323 994
Number of strong components of size 3 154 786
Ratio of vertices in largest component ∼ 0.456
Ratio of vertices in components of size ≤ 3 ∼ 0.341

Some basic numbers regarding the structure of the dataset are given in table 1.
The distribution of the sizes clearly follows a power law (cmp. fig. 2).

As we can see, about 46% of the vertices form one giant strong component,
while the second and third largest strong components contain 9428 and 5925
vertices. Furthermore about 34% are contained in tiny strong components of at
most 3 vertices, resulting in an average size of strong components about 3.

These numbers indicate that the componentwise calculation of PageRank may
significantly decrease the required time. Except for the giant component, every
component may be held in the main memory of a standard computer, allowing a
fast iteration. Due to the large number of very small components (≤ 3 vertices),
PageRank of at least a third of the vertices may even be calculated without
iteration, using a direct solution of a system of linear equations with at most 3
variables.

Assume that there exists a path of components in SC(D) and that the it-
eration and the access to server and database for a component with n vertices

38 M. Brinkmeier

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 c

om
po

ne
nt

s

Component size

SCC sizes

Fig. 2. The distribution of sizes of strong components in the WebGraph in logarithmic
scale

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1.2e+08

 0 2 4 6 8 10

S
im

ul
at

ed
 T

im
e

Clients

Simulated Runtime
Lower bound

Fig. 3. The simulated time over the number of clients

Distributed Calculation of PageRank Using Strongly Connected Components 39

takes about O(n) time5. Since the components on this path has to be calculated
subsequently, the time to calculate PageRank is bounded below by Ω(n). Hence
we may use the maximal number of vertices in components on a path in SC(D)
from a source to a sink, as a lower bound for the time required for the calcula-
tion. This lower bound proved to be 53 903 795 vertices, which is only slightly
more than the giant SCC of 53 891 939 vertices.

Using the above assumption, that the iteration takes linear time, the dis-
tributed calculation of PageRank was simulated to obtain estimations of the
speedup. The server was implemented as a simple queue. The results for 1 to 10
clients are shown in figure 3. As the simulation demonstrates, the use of a small
number of clients may reduce the required time significantly (2 clients to ca. 73%,
3 to ca. 64% and 4 to ca. 59%). But the speedup decreases with more clients.

4.1 Future Work

The results of the experiment seem promising, even though they indicate that
only small number of clients are effective. But the conducted experiments have a
major drawback. The measured “times” are not times used by real calculations
of PageRank. They are estimations based solely on the topology of the strong
component graph. Additional factors, like limited resources are not taken into
account. These may be included in subsequent experiments.

In addition further extensions of the described system are possible. First of
all, the rankings may easily be dynamically updated. As soon as a strong com-
ponent changes, is split or several are composed, it may be inserted into the
queue again and cause the recalculation of all succeeding components. Secondly,
the calculation of the giant strong component may be distributed among several
clients, reducing the resources required by single clients (but increasing the num-
ber of necessary communication and/or iterations). And last but not least, the
clients may be weighted by their performance, restricting the size of the assigned
components, and the extraction strategy of the queue may be varied to obtain
better results.

References

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. Pagerank computation and
the structure of the web: Experiments and algorithms, 2001. citeseer.ist.psu.edu/
arasu02pagerank.html.

[2] Konstantin Avrachenkov and Nelly Litvak. Decomposition of the google pagerank
and optimal linking strategy. Technical Report RR-5101, Institut National de
Recherche en Informatique et en Automatique, 2004.

[3] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Trans. Internet
Tech., 5:92–128, 2005.

5 In fact the required time for a constant number of iterations is about O(n + m),
where m is the number of edges. But since the average degree is small and can
assumed to be constant, this bound can be viewed as O(n).

40 M. Brinkmeier

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web-
search engine. In Proc. of the 7th World Wide Web Conference (WWW7), 1998.

[5] Sergey Brin, Lawrence Page, Rajeev Motwani, and Terry Winograd. The Page-
Rank citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford Digital Library Technologies Project, 1999. http://dbpubs.stanford.
edu:8090/pub/1999-66.

[6] Michael Brinkmeier. Pagerank revisited. Technical report, Technical University
Ilmenau, 2005. to appear.

[7] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. Graph struc-
ture in the web. Computer Networks, 33(1-6):309–320, 2000.

[8] T. Haveliwala and S. Kamvar. The second eigenvalue of the google matrix. Tech-
nical Report 2003-20, Stanford University, 2003. http://dbpubs.stanford.edu/
pub/2003-20.

[9] Taher H. Haveliwala. Efficient computation of pagerank. Technical Report 1999-
31, Stanford University, 1999. http://dbpubs.stanford.edu:8090/pub/1999-31.

[10] Taher H. Haveliwala. Topic-sensitive pagerank. In Proc. of the 11th WWW
Conference (WWW11), pages 517–526, 2002.

[11] Glen Jeh and Jennifer Widom. SimRank: A measure of structural-context simi-
larity. In Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, July 2002.

[12] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H.
Golub. Exploiting the block structure of the web for computing pagerank. Tech-
nical Report 2003-17, Stanford University, 2003. http://dbpubs.stanford.edu:
8090/pub/2003-17.

[13] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[14] Yuan Wang and David J. DeWitt. Computing pagerank in a distributed internet
search engine system. In VLDB, pages 420–431, 2004.

[15] Webbase project. Stanford University,
http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/.

[16] Webgraph. University of Milano, http://webgraph.dsi.unimi.it/.

A Structured Peer-to-Peer System with Integrated Index
and Storage Load Balancing

Viet-Dung Le1, Gilbert Babin2, and Peter Kropf3

1 Department of Computer Science and Operations Research, University of Montreal,
C.P. 6128, Succursale Centre-Ville, Montréal (Québec), Canada H3C 3J7

levietdu@iro.umontreal.ca
2 Information Technologies, HEC Montréal,

3000, ch. de la Côte-Sainte-Catherine, Montréal (Québec), Canada H3T 2A7
Gilbert.Babin@hec.ca

3 Institute of Computer Science, University of Neuchâtel,
Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland

Peter.Kropf@unine.ch

Abstract. Load balancing emerges as an important problem that affects the per-
formance of structured peer-to-peer systems. This paper presents a peer-to-peer
system relying on the partitionning of a de Bruijn graph. The proposed system
integrates mechanisms that perform index and storage load balancing. Index load
refers to the network traffic incurred by a peer in managing an object index, while
storage load refers to the storage space and network traffic required to store ob-
jects. The proposed mechanisms allow to effectively distribute both index load
and storage load according to the peers’ capacities.

1 Introduction

A peer-to-peer (P2P) system comprises multiple parties (called peers) that can request
and provide services at the same time. This decentralized characteristic furthers spread-
ing of workload among all participating peers and thus contributes to solutions for scal-
ability issues in distributed systems. However, in comparison to a centralized system,
managing shared objects becomes difficult because of the lack of a central or hierarchi-
cal control. Structured P2P systems, such as [3, 4, 7, 9, 11, 12, 14, 17], introduce efficient
mechanisms to store and access these distributed objects. The principle inherent to such
systems consists in mapping every object onto a key space or index (e.g., by hashing the
object identifier), distributing this key space over the available peers, and maintaining
a structured connection among the peers according to the keys each peer holds. The
connection structure ensures to guide the search for an object to the peer responsible
for the object’s key in a small number of hops, often O(log n) in an n-peer system.

The system performance of a P2P network is critically affected by its overload.
Indeed, the storage or processing load of the peers, the communication load and the sys-
tem management load must be carefully handled to obtain satisfactory system perfor-
mances which may be regarded as the fastest possible response time to user/application
requests. Workload distribution and balancing mechanisms contribute to achieve good
system performance. However, they may induce expensive restructuring processes, i.e.,

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 41–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 V.-D. Le, G. Babin, and P. Kropf

maintenance costs. Our approach aims to balance workload in P2P systems while keep-
ing maintenance costs low. We are interested in two workload aspects: index load
and storage load. In P2P systems, finding an object usually requires routing requests
through intermediate peers before arriving at destination. The bandwidth used for this
task makes up the index load on each peer. The storage load, on the other hand, denotes
the usage of each peer’s resources in object accommodation. Many load balancing ap-
proaches have been proposed. However, to our knowledge, none takes into account
these two aspects of load simultaneously.

The present paper introduces a solution that simultaneously handles both index and
storage load balancing by separating the concerns of peer identifiers (addresses), key
management, and object storage locations. In particular, the proposed P2P structure
is based on partitioning a de Bruijn graph where the node identifier space is identi-
cal to the key space. Therefore, we will use key and de Bruijn node exchangeably.
Each peer holds a non-empty interval of de Bruijn nodes and maintains connections to
other peers that hold neighbouring de Bruijn nodes. Based on this structure, looking
for a specific key in the P2P system follows appropriate routing paths in the de Bruijn
graph.

The index load balancing method takes into account the network capacity of the
peers. It aims to minimize the network overload that may occur while routing requests
in the system. This goal is different from that of most other methods which perma-
nently adjust the load to a target. Since the decrease of the overload reacts only when
an overload exists, our method saves on the costs of rebalancing. The balancing method
involves two tasks: (1) locally calculating the index load on every peer and (2) dynami-
cally transferring index load from peer to peer by modifying the key interval managed
by each peer. We propose efficient mechanisms to perform these two tasks.

The storage load balancing method is based on separating the key and the stor-
age location of objects. It eliminates the restriction of an object’s residence to its root,
where the root refers to the peer responsible for the key interval which includes the
object’s key. Instead, the root needs only to keep pointers to the location of its objects.
This separation enables and facilitates the index load balancing since the move of a
key interval from peer to peer entails moving only the involved object pointers (very
small in size) instead of the objects themselves. Thus, moving keys does not affect the
storage load. Without restriction to the root, the accommodation of objects chooses
the storage location such that the storage load on every peer does not exceed the con-
tributed storage capacity. In addition, we take into account the capacity of the peers
in serving object requests and migration. We propose a balancing algorithm that mini-
mizes the peer’s overload with regards to its capacity. Like the index load balancing, the
consideration of overload in this algorithm minimizes rebalancing costs. The algorithm
is based on exchanging appropriate objects among pairs of peers in order to decrease
the overload whenever it occurs. Finally, a fair advantage of separating key and storage
location is the replication facility. The root of an object can maintain a set of pointers to
its replicas (placed on different peers). Thus, the object availability is enhanced without
further replication techniques.

The rest of this paper is organized as follows. Section 2 summarizes some recent
work on load balancing in structured P2P systems. Sections 3 and 4 respectively

A Structured P2P System with Integrated Index and Storage Load Balancing 43

describe the methods of index load and of storage load balancing that can operate si-
multaneously. The last section provides some discussion.

2 Related Work

A straightforward approach to load balancing in a structured P2P system is the equal-
ization of the key occupation among the peers (e.g., [1, 8]). The equalization in [1]
stochastically makes peers with short key intervals leave and rejoin the system by split-
ting peers with long key intervals. The method proposed in [8], on the other hand,
balances a virtual binary tree whose leaf nodes represent the participating peers. In
practice, load balance depends also on the distribution of objects on the peers, the object
size, and the storage, processing, and communication capacity of the peers. Equalizing
key occupation does not ensure an even load distribution when taking into account all
these different factors making up the load.

The application of the power of two choices paradigm [2] applies multiple hash func-
tions to map each item to multiple peers. This allows to insert an item on the least loaded
peer. The methods in [5, 10] achieve load balance by exchanging key responsibility
among the peers. The above approaches cannot simultaneously balance the index load
and the storage load because they associate the storage location and the key. Balancing
one workload aspect can break the balance of the other one, and vice versa. PAST [13]
uses a replica diversion process to balance the storage load. However, the concerns of
storage location and file identifier in PAST are not separated. It maintains an invariant
that limits the storage location of a file to the leaf sets (see [12] for definition) of a
number k of peers. The maintenance of this invariant introduces considerable overhead
in a dynamically changing P2P system, e.g., a system with index load balancing.

Expressways [16], an extension of CAN [11], proposes an index load balancing
method. It structures the network (of size n) as a hierarchy of log n levels, each one
operating like a basic CAN. The balancing method is based on promoting peers with
higher bandwidth to higher levels in the hierarchy. However, the reaction of the sys-
tem to balance the load takes place only after aggregating the loads and the capaci-
ties of all peers in the system. Moreover, keeping each peer’s and the overall system’s
load/capacity ratio equal can constantly bring the system to restructure itself even if
individual peers would not require rebalancing.

The P2P systems introduced in [6, 9, 15] employ the partition of a de Bruijn graph.
Like [1, 8], they aim at equalizing key occupation. As discussed above, this equalization
is not sufficient for load balancing in structured P2P systems.

3 Index Load Balancing

3.1 System Structure and Routing

Our proposed P2P network partitions a binary de Bruijn graph G(V, A) of 2m nodes.
The key space is identical to the de Bruijn node identifier space V = [0, 2m − 1]1.

1 [b, e] denotes the interval of integers from b to e (inclusive). If b ≤ e, [b, e] = {x ∈ Z | b ≤
x ≤ e}, otherwise, [b, e] = [b, 2m − 1] ∪ [0, e].

44 V.-D. Le, G. Babin, and P. Kropf

Obviously, with a large enough m, the number of peers in a real network does not attain
2m. Each peer holds and is responsible for a non-empty interval of de Bruijn nodes (also
called key interval). Every peer is identified by its network (e.g., IP) address. Given a
peer p, we denote:

– p.a – the address of p,
– p.b and p.e – respectively the beginning and ending keys of p’s key interval.

Two peers p and q must connect, denoted connect(p, q), if there exists at least one
arc between any two de Bruijn nodes that fall within the key intervals of p and q respec-
tively, or if their key intervals are numerically adjacent.

connect(p, q) =

⎧⎨
⎩

true if (∃x, y | (x, y) ∈ A ∧ x ∈ [p.b, p.e] ∧ y ∈ [q.b, q.e])
∨ (p.e = (q.b − 1) mod 2m) ∨ (p.b = (q.e + 1) mod 2m)

false otherwise

These connections are bidirectional, i.e., if connect(p, q) then connect(q, p). Two
connecting peers are called neighbours. Each peer maintains a neighbour list consisting
of a triple (q.a, q.b, q.e) for each neighbour q in the list. The separation between peer
address and key means that the peers can dynamically change their key interval [b, e]
without affecting the address a.

Loguinov et al. [6], and Naor and Weider [9] introduced a similar structure based on
the de Bruijn graph. Their goal is to balance the partitioned zone sizes through different
arrival/departure mechanisms. Our focus, however, is in balancing mechanisms taking
into account the storage capacity and communication capacity of peers.

The routing function consists in directing a message to the root of a given key x
from anywhere in the system. The message follows appropriate de Bruijn routing paths
towards x. For convenience, all expressions on the de Bruijn node identifiers are im-
plicitly modulo 2m, e.g., x + y means (x + y) mod 2m. We also refer to the beginning
and ending values of interval I as I.b and I.e, respectively.

Definition 1. The distance between two keys x and y, denoted distance(x, y), is the
minimum among the length of the de Bruijn routing paths2 from x to y and from y to x.

Definition 2. The distance between a key interval I and a key x, denoted
distance(I, x), is equal to distance(v, x) where v ∈ I and � ∃ v′ ∈ I | distance(v′, x)
< distance(v, x).

In the de Bruijn graph of 2m nodes, each node x has four arcs respectively to nodes 2x,
2x+1, �x/2�, and �(x+2m)/2�. Let the arcs to 2x and 2x+1 be the fore-arcs and the
arcs to �x/2� and �(x + 2m)/2� be the back-arcs. We use notation foredistance(x, y)
to specify the length of the routing path following only fore-arcs from x to y. Similarly,
the notation backdistance(x, y) specifies the length of the routing path following only
back-arcs. By Definition 1,

distance(x, y) = min(foredistance(x, y), backdistance(x, y)).
2 Note that the de Bruijn routing path between two nodes in an undirected de Bruijn graph is not

always the shortest path.

A Structured P2P System with Integrated Index and Storage Load Balancing 45

Claim 1. Given a node x, the set of every node y such that foredistance(x, y) = i
(with 0 ≤ i ≤ m), denoted Fi(x), is Fi(x) = [x2i, x2i + 2i − 1].

Proof. If i = 0, it is clear that F0(x) = {x}.
If i > 0, suppose that Fi−1(x) = [x2i−1, x2i−1 + 2i−1 − 1] is correct. Following

the fore-arcs of all nodes in Fi−1(x), we have

Fi(x) =
⋃

y∈Fi−1(x)

F1(y) = [x2i−12, (x2i−1+2i−1−1)2+1] = [x2i, x2i +2i−1] �

Claim 2. Given a node x, the set of every node y such that backdistance(x, y) =
i (with 0 ≤ i ≤ m), denoted Bi(x), is Bi(x) = {y0, y1, · · · , y2i−1} where yj =
�x/2i� + j2m−i.

Proof. If i = 0, it is clear that B0(x) = {x}.
If i > 0, suppose that Bi−1(x) = {y0, y1, · · · , y2i−1−1} where yj = �x/2(i−1)� +

j2m−(i−1) is correct. Following the back-arcs of all yj , we have

Bi(x) =
⋃

j∈[0,2i−1−1]

B1(yj)

where

B1(yj) = {�yj/2�, �(yj + 2m)/2�}
= {�(�x/2(i−1)� + j2m−(i−1))/2�, �(�x/2(i−1)� + j2m−(i−1) + 2m)/2�}
= {�x/2i� + j2m−i, �x/2i� + (j + 2i−1)2m−i}

For all j ∈ [0, 2i−1 − 1], the pair (j, j + 2i−1) gives all integers in [0, 2i − 1]. �
Given a key interval I and a key x, the distance(I, x) algorithm calculates Fi(x) and
Bi(x) for i from 0 to m. If at an iteration d, Fd(x) or Bd(x) has common keys with I ,
it returns d. This algorithm is efficient because it iterates testing Fi(x) and Bi(x) for at
most m + 1 times before finding the distance.

Definition 3. The de Bruijn neighbourhood set of a key interval I , denoted
dbneighbour(I), is the set ([I.b × 2, (I.e × 2) + 1] ∪ [�I.b/2�, �I.e/2�] ∪ [�(I.b +
2m)/2�, �(I.e + 2m)/2�]) \ I .

Routing: the following algorithm routes a message from the current peer p to the peer
holding key x.

1. if x ∈ [p.b, p.e], peer p is the destination. Otherwise, continue with step 2;
2. calculate the set U = dbneighbour([p.b, p.e]). Find t ∈ U such that distance(t, x)

= distance(U, x). Select neighbour q such that t ∈ [q.b, q.e]. Then continue rout-
ing to x from q.

The set U may contain several key intervals. We use here the notation distance(U, x)
to refer to the minimal distance from the intervals in U to x. The key t satisfying the
equality distance(t, x) = distance(U, x) is easily found: we select the key from the
intersection of Fi(x) or Bi(x) and the interval (in U) the nearest to x while calculating
the distance. This algorithm ensures to reduce the distance from the current position t
to x by at least 1 after each hop. The number of routing hops is therefore bound by m.

46 V.-D. Le, G. Babin, and P. Kropf

3.2 Index Load Calculation

The index load of a peer is defined as the sum of routing message sizes passing through
the peer in a unit of time. The idea of index load balancing is to transfer key intervals
between peers to minimize the overload. It requires to calculate the routing traffic on
different subsets (which we call zones) of each peer’s key interval. For large key inter-
vals, registering the routing traffic through all keys is inefficient or even unrealizable.
To make this monitoring efficient, we restrict key interval movements. First, a peer p
will only transfer keys to the peers holding p.b − 1 or p.e + 1. Second, the size of the
interval transferred should range from 1 to s − 1 where s is the whole key interval’s
size. We further simplify the monitoring by dividing each peer p’s key interval into k
levels, where k = �log2(p.e − p.b + 1)�. Levels are further broken down into 3 zones.
Figure 1 depicts this division.

Fig. 1. Zone division at k levels on a peer p

At each level i (0 ≤ i < k), li, the length of zone zi,0, is given by:

li =
{ �(p.e − p.b + 1)/2� if i = 0

�li−1/2� if 0 < i < k

Then, we have the zones: zi,0 = [p.b, p.b + li − 1], zi,1 = [p.e − li + 1, p.e], and
zi,2 = [p.b, p.e] \ (zi,0 ∪ zi,1). It follows that zk−1,0 = {p.b} and zk−1,1 = {p.e}. In
the special case where p.b = p.e, there exists only one level with z0,0 = {p.b} and
z0,1 = z0,2 = ∅.

Each peer p constructs a table Gp[k][3]. Gp[i, j] registers the routing traffic through
zone zi,j . This table does not consume much memory space since k < m. According
to the routing algorithm, when a message λ passes through peer p, λ is oriented via a
de Bruijn node t ∈ [p.b, p.e]. For every level i, if t ∈ zi,j then Gp[i, j] = Gp[i, j] + |λ|
(where |λ| denotes the size of λ). Obviously, the total routing traffic on peer p is Trp =∑

j∈[0,2] Gp[i, j], for any i.
Each peer p has a routing traffic capacity Cp. It verifies the index load periodically.

We denote the period duration as δt, the beginning time of the current period as t0, and
the current time as tc. Then, the current index load is Tp = Trp/(tc−t0). In case tc−t0
is too small and may produce Trp/(tc − t0) reflecting an incorrect index load of p, we
calculate the load as Tp = (Tr ′

p + Trp)/(tc − t′0) where Tr ′
p and t′0 are, respectively,

the routing traffic and the beginning time of the previous period. If Tp > Cp, peer
p is overloaded. At the end of each verification period, if p is overloaded, it executes
the index load balancing algorithm and starts a new period. Any change of p.b or p.e
involves also a new period. The beginning of every period resets k and table Gp.

A Structured P2P System with Integrated Index and Storage Load Balancing 47

3.3 Index Load Balancing Algorithm

When a peer p discovers that it is overloaded (Tp > Cp), it should transfer an appro-
priate key interval zi,0, zi,1, zi,0 ∪ zi,2, or zi,1 ∪ zi,2 to the corresponding adjacent
neighbour (the peer holding p.b − 1 or p.e + 1). The transfer must: (1) reduce as much
as possible the cumulative overload of the two peers involved, and (2) be as small as
possible. These criteria maximize the reduction of the cumulative overload while entail-
ing the least changes. Since peer p only has local information, it does not know which
key interval the destination peer can receive. Asking the destination peer for its load
information before transferring would slow down the procedure. Furthermore, this may
entail an incorrect decision since the status of the destination peer evolves continuously.
Our solution allows peer p to propose a set of candidate key intervals to the neighbour.
The transfer is completed when the destination peer chooses the most appropriate inter-
val. Such transfer requires only one ask-answer communication between the two peers.
Let wh,j (for integers 0 ≤ h < 2k and 0 ≤ j ≤ 1) represent the candidate key intervals
to transfer. We determine wh,j using the following rule:

wh,j =
{

zk−h−1,j if 0 ≤ h < k
zh−k,j ∪ zh−k,2 if k ≤ h < 2k

Thus, the routing traffic load on wh,j , denoted T (wh,j), is given as:

T (wh,j) =

⎧⎪⎨
⎪⎩

Gp[k − h − 1, j]
tc − t0

if 0 ≤ h < k

Gp[h − k, j] + Gp[h − k, 2]
tc − t0

if k ≤ h < 2k

Index Load Balancing Algorithm: The index load balancing algorithm (applying the
key interval transfer protocol below) on peer p is as follows:

Let n0(p) denote the adjacent neighbour of p that holds p.b−1 and n1(p) denote the
adjacent neighbour of p that holds p.e + 1.

1. select the smallest h such that ∃j ∈ {0, 1} and Tp − T (wh,j) ≤ Cp. Then, execute
the key interval transfer protocol for wh,j from p to nj(p). If the transfer succeeds,
the load balancing stops. Otherwise, continue with step 2;

2. set l = (j + 1) mod 2. Select the smallest h such that Tp − T (wh,l) ≤ Cp. Then,
execute the key interval transfer protocol for wh,l from p to nl(p). After this step,
the load balancing stops even if the key interval transfer does not succeed.

Key Interval Transfer Protocol: The transfer protocol for the key interval wh,j from
peer p to peer nj(p) tries to move one of the key intervals w0,j , w1,j ,..., wh,j from
p to nj(p) such that the combined overload of p and nj(p) is minimized. Formally,
the overload of p is Op = (Tp − Cp + |Tp − Cp|)/2 and that of nj(p) is Onj(p) =
(Tnj(p) − Cnj(p) + |Tnj(p) − Cnj(p)|)/2. Thus, the transfer must reduce as much as
possible Op + Onj(p). The key interval transfert protocol involves the following steps:

1. p sends to nj(p) a key interval transfer proposal including the list (w0,j , w1,j ,...,
wh,j), the list (T (w0,j), T (w1,j),..., T (wh,j)), and Op;

2. if nj(p) is not able to receive a key interval or Tnj(p) ≥ Cnj(p), it refuses the
transfer. Otherwise,

48 V.-D. Le, G. Babin, and P. Kropf

(a) it searches for the greatest g ∈ [0, h] such that Tnj(p) + T (wg,j) ≤ Cnj(p);
(b) if no such g exists, nj(p) searches for the smallest g ∈ [0, h] satisfying

|T (wg,j) − Op| + T (wg,j) − Op + 2(Tnj(p) − Cnj(p)) < 0 (1)

i. if no such g is found, nj(p) refuses the transfer because Op+Onj(p) cannot
decrease;

ii. if such a g is found, nj(p) sets the chosen index as g;
3. if an index g is chosen (by step 2a or 2(b)ii), nj(p) changes its key interval by

[nj(p).b, nj(p).e] ∪ wg,j and establishes connections to the new neighbours. Then,
it sends to p an acceptance message specifying the chosen index g;

4. upon receiving the acceptance message with the chosen index g, peer p updates its
key interval to [p.b, p.e] \ wg,j and releases the unnecessary connections to other
peers. The transfer then succeeds;

5. in case nj(p) refuses the proposal of p, the transfer fails.

Theorem 1. Given wh,j the interval to be transferred from peer p to peer nj(p) using
the key interval transfer protocol. If nj(p) chooses an index g ∈ [0, h], then transferring
wg,j will maximize the reduction of the combined overload of p and nj(p).

Proof. Peer nj(p) chooses an index g ∈ [0, h] in step 2a or 2(b)ii of the protocol to
accept the transfer of wg,j . Recall that at each peer on the routing path, the routing
algorithm limits the choice of the next de Bruijn node t (to direct the message to) in
the de Bruijn neighbourhood set of the current peer’s key interval. Therefore, if wg,j

moves from p to nj(p), T (wg,j) is transferred from p to nj(p) with high probability3.
The overloads of p and nj(p) after the transfer are estimated as:

O′
p = (Tp − T (wg,j) − Cp + |Tp − T (wg,j) − Cp|)/2

O′
nj(p) = (Tnj(p) + T (wg,j) − Cnj(p) + |Tnj(p) + T (wg,j) − Cnj(p)|)/2

The condition for reducing the total overload of p and nj(p) is:

ΔO = O′
p + O′

nj(p) − Op − Onj(p) < 0 (2)

If g is set by step 2a, Tnj(p) +T (wg,j) ≤ Cnj(p). Thus, O′
nj(p) = 0. Since O′

p < Op

and Onj(p) = 0, (2) holds.
If g is set by step 2(b)ii, (1) holds and O′

nj(p) = Tnj(p) + T (wg,j) − Cnj(p). It is
easy to prove that the left hand side of (1) is equal to 2ΔO and that the smallest chosen
index g induces the largest |ΔO|. �
In the key interval transfer protocol, step 2b is mandatory. Study the case where p is
overloaded, nj(p) is underloaded, and there exists no g ∈ [0, h] such that Tnj(p) +
T (wg,j) ≤ Cnj(p). Without step 2b, p cannot transfer any key interval to nj(p). Since
nj(p) is underloaded, it does not intend to take off any part of its key interval. This
situation blocks the transfer of load from p. The presence of step 2b allows peer p, in
this case, to transfer the least loaded zone wg,j when it reduces the combined overload
of p and nj(p). The load transfer thereby continues until some steady state.

3 Because of the de Bruijn graph structure, it cannot be guaranteed that all trafic “transferred”
will effectively be transferred.

A Structured P2P System with Integrated Index and Storage Load Balancing 49

4 Storage Load Balancing

We define the storage load of a peer as the total of size of the objects it stores. Each peer
has a limited capacity available for storage which might be used for object migration.
The system’s management to store objects requires network bandwidth for object dis-
tribution, re-distribution, and associated index management (i.e., routing requests to the
network). Consequently, the storage load balancing method has three goals: (1) keep-
ing the storage load under the storage capacity on every peer, (2) adjusting bandwith
consumption requirements to bandwidth availability, and (3) minimizing its impact on
index load balancing (Sect. 3). To achieve these three goals, we propose to separate the
location of the key of an object from the location of the object itself. In this way, objects
can reside on arbitrary peers. Therefore, roots are only required to keep pointers to the
objects under their responsibility. This approach simplifies the mechanisms required to
achieve the first two goals. Finally, the independence of object and key locations en-
ables us to achieve the third goal. Indeed, the key interval transfer remains efficient
since only object pointers (very small in size) are required to move when a key interval
transfer occurs.

A consequence of this approach is that replication of objects is simplified, hence
enhancing object availability, without the need for multiple mapping hash functions
(such as e.g. in [2]) or for maintaining invariants that constrain replication to nearby
peers (e.g., [13]). A root simply needs to keep pointers to the peers that store the replicas
of an object. In this paper, we consider that up to d (d ≥ 1) replicas of an object may
be stored. When a peer departs the network, it must guarantee the objects’ availability.
By allowing replication, we facilitate this task, since the departing peer only has to wait
for objects with unique replicas to be copied elsewhere.

4.1 Object Pointer and Object Insertion

Every peer maintains two tables: indices and storage. Each entry of table indices
contains the index of an object under the peer’s responsibility. The index includes the
object identifier (oid), and a list of pointers to the replicas (replicas). A replica pointer
consists in the replica identifier (rid - a number in [0, d − 1]), the storing peer address
(location), and the replica’s storage counter (counter). This counter is initially set to
0 and incremented after each change of location. Its use will be explained below. The
storage table contains the list of objects stored on the peer. For each object, it records
the object identifier (oid), the replica identifier (rid), the size (size), the address of
the root (root), and the storage counter (counter). In order to maintain indices and
storage, we propose two protocols, namely the storage notification protocol and the
root notification protocol.

Whenever a peer receives an object, it sends to the root of the object a storage noti-
fication which contains its address and (oid, rid, counter) of the object. The counter
field lets the root know whether the notification is newer than the corresponding pointer
it holds. If the notification is new, the root updates the pointer. In the notification, the
sending peer attaches the root field of the object header, asking whether it keeps the
correct root address or not. If the information is incorrect, the root sends back a root
notification.

50 V.-D. Le, G. Babin, and P. Kropf

When a peer receives a key interval, it sends root notifications to the storing peer of
the objects involved. A root notification contains the root address, (oid, rid, counter)
of the object, and the storing peer’s address (location), as known by the root. On re-
ceiving the root notification, the storing peer updates the corresponding object’s header.
If counter or location are incorrect, the storing peer sends a storage notification back.

The maintenance of pointer consistency may seem complicated. However, in com-
parison to traditional systems which associate storage location and key, the key interval
transfer used in our structure requires little effort. It involves the move of a number of
pointers and some notifications but does not require any object transfer. The size of an
object pointer and of a notification is much smaller than the size of the object.

The object insertion algorithm must ensure that Sp ≤ Dp for every peer p, where Sp

and Dp are the storage load and capacity of p, respectively. In addition, it tries to store
the object on up to d different peers. An insertion request contains the object identifier
(oid) and size (size). The request is routed to the root of the object. If an index for
the object already exists, the insertion algorithm stops. Otherwise, it starts diffusing
replicas, with rid from 0 to d − 1. The diffusion process tries the root first.

A replica diffusion message λr contains oid, size, and ridlist, where ridlist is the
list of rids remaining to be assigned. The message traverses multiple peers. A ttl (time-
to-live) field limits the number of peers visited. At each peer q, if Sq + size ≤ Dq and
q does not store any replica of the same object, q extracts a rid from ridlist, loads the
corresponding replica to the local storage, and sends a storage notification to the root. If
ridlist is not empty and ttl > 0, q decrements ttl and forwards λr to a neighbour not
visited. Message λr maintains the list of visited peers to perform this verification. If ttl
reaches 0 but no replica was stored, the insertion fails. If the number of stored replicas
is between 1 and d − 1, the root starts a new diffusion for the remaining rids.

Object deletion is not considered here since it does not increase the storage load.

4.2 Storage Load Balancing Algorithm

Recall that the first two goals of the storage load balancing are to avoid storage overload
and to take into account the bandwidth required respectively available to do so. Im-
plicitely, the storage capacity of a peer Dp corresponds to the real storage available for
objects. However, for the system to work properly, another boundary must be defined,
which we refer to as the desired capacity on a peer Dp, with Dp < Dp. When inserting
objects into the system, we ensure that Sp ≤ Dp, hence allowing Sp to temporarily ex-
ceed Dp but always limiting it to Dp. Consequently, the storage load balancing problem
can be specified as the minimization of the storage overload with regards to Dp while
keeping Sp ≤ Dp.

Given Ap = Dp − Sp the available space on peer p, a peer is overloaded when the
overload Op = (−Ap + |Ap|)/2 is positive, otherwise Op = 0. The storage load bal-
ancing algorithm aims at minimizing the overload of all system components. It consists
in the decentralized exchange of objects between pairs of peers. Suppose that an over-
loaded peer p exchanges objects with a peer q. In general, p sends to q a set of objects
Rpq and q sends back to p a set of objects Rqp. Given that Spq and Sqp are the storage
loads of Rpq and Rqp, respectively, the combined overload of p and q decreases only if
Aq > 0 and 0 ≤ Sqp < Spq .

A Structured P2P System with Integrated Index and Storage Load Balancing 51

Definition 4. Given that peer q receives a storage load Spq from a peer p and selects a
storage load Sqp to send back to p, the optimal exchange must (1) reduce the combined
overload of p and q the most, and (2) minimize Sqp.

Condition (1) guarantees the fastest reduction of the combined overload, while con-
dition (2) minimizes the data volume sent. Hence, this approach not only reduces the
storage overload, but also the bandwidth required to perform storage load balancing.

Theorem 2. Given two peers p, q, with Ap < 0 and Aq > 0, and Spq , the optimal
exchange occurs when

Sqp =

⎧⎪⎪⎨
⎪⎪⎩

0 if Spq ≤ Aq or Aq < Spq ≤ −Ap

closest to min(Ap, −Aq) + Spq

such that 0 ≤ Sqp < Spq

and Sqp > Ap − Aq + Spq

if Spq > max(−Ap, Aq)

Because of the limitation of space, we do not present the proof of this theorem. How-
ever, it can be found in the full version of this paper.

Storage Load Balancing Algorithm: Each peer p periodically verifies the storage load.
If p is overloaded, it starts a balancing session:

1. p diffuses an available space interrogation φ, with a limited ttl (time-to-live) field,
to its neighbourhood. Each peer q that receives φ the first time, processes φ, decre-
ments ttl, and forwards φ to its neighbours excluding p and the peer from which φ
comes. q responds to φ by sending Aq = Dq − Sq to p if Aq > 0;

2. for each reply Aq received, if p is still overloaded, p and q exchange objects such
that the combined overload of p and q will decrease the most while the object
migration is minimized:
(a) p selects a set of objects Rpq to send to q satisfying one of the following con-

ditions: (1) Rpq is the smallest that can underload p without overloading q; (2)
if (1) cannot be satisfied, Rpq is the largest that cannot overload q; and (3) if
both (1) and (2) cannot be satisfied, Rpq contains only the smallest object;

(b) q selects a set of objects Rqp to send back to p. The selection is based on the
optimal exchange condition stated in Theorem 2.

5 Conclusion

We have introduced balancing methods for index load and storage load that can simul-
taneously operate. The index load balancing is based on the exchange of key intervals
among the peers. Unlike the Expressways [16] method, which must collect the load
information of all peers before redistributing load, our method relies only on local in-
formation. We thus avoid the overhead of the load information communication.

The storage load balancing method manipulates the system structure at the object
level, instead of the key level (such as the Virtual servers [10] method). The manipula-
tion at the key level exhibits less flexibility since the all objects belonging to one key

52 V.-D. Le, G. Babin, and P. Kropf

must move together with the key. Moreover, a move of keys in balancing the storage
load also affects index load.

The load balancing methods presented operate on the overload instead of the load
itself. Most other methods aim to adjust the load or the load/capacity ratio of every
peer with a global objective function. This requires to globally calculate the targeted
optimization and to continuously reorganize the system. By relying on the local exami-
nation of the overload, we need to react only when the overload exists and when it can
be reduced. Experiments to evaluate the proposed load balancing methods are currently
being conducted. So far, preliminary results have confirmed their anticipated efficiency.
These experimentation results will be presented and discussed elsewhere.

References

1. M. Bienkowski, M. Korzeniowski, and F. M. auf der Heide. Dynamic load balancing in
distributed hash tables. In IPTPS’05, February 2005.

2. J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash
table. In IPTPS’03, February 2003.

3. P. Fraigniaud and P. Gauron. Brief announcement: An overview of the content-addressable
network d2b. In ACM PODC’03, page 151, July 2003.

4. M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table.
In IPTPS’03, February 2003.

5. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer sys-
tems. In ACM SPAA’04, pages 36–43, June 2004.

6. D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of structured peer-
to-peer systems: Routing distance and fault resilience. In ACM SIGCOMM’03, August 2003.

7. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the
butterfly. In ACM PODC’02, pages 183–192, July 2002.

8. G. S. Manku. Balanced binary trees for id management and load balance in distributed hash
tables. In ACM PODC’04, pages 197–205, July 2004.

9. M. Naor and U. Weider. Novel architectures for p2p application: the continuous-discrete
approach. In ACM SPAA’03, June 2003.

10. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in struc-
tured p2p systems. In IPTPS’03, February 2003.

11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalabale content-
addressable network. In ACM SIGCOMM’01, pages 161–172, August 2001.

12. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM Middleware’01, November 2001.

13. A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale, per-
sistent peer-to-peer storage utility. In ACM SOSP’01, October 2001.

14. I. Stoica, R. Moris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In ACM SIGCOMM’01, pages 149–
160, August 2001.

15. X. Wang, Y. Zhang, X. Li, and D. Loguinov. On zone-balancing of peer-to-peer networks:
Analysis of random node join. In ACM SIGMETRICS’04, June 2004.

16. Z. Zhang, S.-M. Shi, and J. Zhu. Self-balanced p2p expressways: When marxism meets
confucian. Technical Report MSR-TR-2002-72, Microsoft Research, 2002.

17. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerance
wide-area location and routing. Technical Report UCB/CSD-01-1141, University of Califor-
nia Berkeley, April 2002.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 53 – 67, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Grid-Based Vehicle Locating System

Dhaval Shah, Dhawal Patel, and Sanjay Chaudhary

Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT),
Gandhinagar, 382009, India

{dhaval_shah, dhawal_patel, sanjay_chaudhary}@da-iict.org

Abstract. Advances in Information Technology have led to development of
various Automatic Vehicle Location (AVL) systems. The automotive industry
quickly adopted this system as it provides location services for vehicles through
wireless technologies. But these systems are not explicitly optimized to take
advantage of grid computing. Grid computing offers the infrastructure for
developing coordinated, scalable resource sharing in a dynamic environment to
maximize the utilization of the available resources in the network. Resources
can be microprocessors, storage media, files, bandwidth, sensors etc. The
problems like dynamic nature of resources, single point of failures, scalability,
real time delivery of vehicle location information are mostly ignored in the
design of such systems. The data grid concept, which addresses the above
issues, can be used to improve the performance of Automatic Vehicle Location
systems. We propose the architectural model for the vehicle transport system to
be operated in grid environment to address the above mentioned problems,
discuss implementation related issues, and benefits of our proposed model.

Keywords: AVL, Grid Computing, GPS, GIS, Data-grid, Web Services, Peer-
to-Peer, Overlay networks.

1 Introduction

Heading towards the Information Technology age, more and more people and their
vehicles will depend on wireless technologies to keep them connected with others and
to facilitate safe, and efficient travel. To realize this concept, the present system of
public transport has to be modified to exploit the IT infrastructure. There are several
problems in the present transport infrastructure employed by the Government, which
does not use the IT very effectively. Problems like traffic congestion, delays, accidents,
inability to track the vehicle, inability to get route and schedule information, theft vehicle
tracking, obstacle awareness etc, can be addressed.

Many transportation applications can be supported by centralized location and
navigation systems, which utilize the wireless communication networks, host
facilities, and other infrastructure together with the on-board vehicle equipment to
locate and navigate. These applications include public transit system supported by
wireless communications network [1][2][3][4][5]. Among numerous benefits of an
automatic vehicle location systems are:

54 D. Shah, D. Patel, and S. Chaudhary

Schedule Adherence: One major reason for reluctance among the customers is to use
a public transport service is the uncertainty of the arrival time of bus at origin,
destination and in-between points. Information regarding arrival of public transport
vehicles can alleviate these problems and citizens will rely on the schedules of public
transport system.

Safety and Security: Knowing the location of the buses ensures the safety and
security of operators and customers, in case of normal and emergency situations.

Public Information: A high level of public information can be provided to general
public on devices like mobile phones, PCs (Personal Computers) and other smart
devices.

Improve Fleet Management: To respond to the spotty demands created by special
circumstances.

We need to have accurate vehicle location services to address these issues.

2 Location Technologies

Most automatic vehicle location systems uses Global Positioning Systems (GPS) and
Geographical Information System (GIS) data to locate the vehicle and get additional
information about the location and features of the place. There are basically several
location technologies [6]:

2.1 Dead Reckoning and Map-Matching

Dead-reckoning systems monitor the vehicle’s internal compass and odometer and
calculate its position by measuring its distance and direction from a known central
starting point. Dead-reckoning systems frequently get off track and can be corrected
using a technique called map matching. Map-matching systems store a map of the
vehicle’s coverage area in a database and assume that when a vehicle changes
direction, it must have turned from one road on to another. When a vehicle does make
a turn, map-matching systems alter the vehicle’s record location to the nearest
possible point at which the turn could have taken place. Because of the low degree of
positional accuracy of dead reckoning and map matching, most AVL systems use
more advanced technology options.

2.2 Signpost

When vehicles, such as transit buses, regularly travel a fixed route, many fleet
operators have found that sign-post-based positioning systems offer an alternative to
more advanced AVL technologies. Antennas are placed at locations throughout the
vehicle’s route and record the time when the vehicle passes nearby. Probe-based
surveillance using toll tags and readers constitute a form of signpost-based AVL
system. With some transit-based systems, the “signpost” also transmits the location of
the signpost (and, therefore, the bus itself) to the bus; and the bus then transmits this
information to center via radio communications.

 Grid-Based Vehicle Locating System 55

2.3 Ground-Based Radio Navigation

In “terrestrial” or “ground-based” radio navigation, the AVL vendor sets up several
receiving antennas in a metropolitan area. Each appropriately equipped vehicle
broadcasts a radio frequency (RF) signal to all nearby receiving antennas. By
measuring the time it takes for the signal to travel to the antenna, the distance from
the vehicle to the antennas can be determined. When three or more antennas receive
the vehicle’s signal, the vehicle’s position can be uniquely determined. A recent
approach to radio navigation involves cellular telephones – determining a vehicle’s
location by measuring signals resulting from cellular phone usage within the vehicle.
A disadvantage of radio-navigation is that RF signals have difficulty in transmitting
through large obstructions, such as mountains, tunnels, parking garages, and
metropolitan canyons formed by the large buildings that line many downtown city
streets.

2.4 Global Positioning Systems (GPS)

Global positioning systems (GPS) use a network of satellites that are continuously
orbiting the Earth to locate any object anywhere on the planet. The satellites are
available free-of-charge to anyone with a device capable of receiving the satellite
signals. The position of the objects is determined measuring how long a radio signal
takes to reach the object from multiple satellites. GPS is by far the most accurate
global navigation system ever devised, with accuracies in the range of 5 to 30 feet.
Similar to radio-navigation, GPS signals have difficulty transmitting through large
objects. The signals also have trouble transmitting through opaque objects, such as
leaves on trees.

3 Automatic Vehicle Locating System: Present Status

Europeans identified a term for automatic vehicle locating system, in terms of
“telematics” [7]. Telematics is the use of computers to receive, store, and distribute
information about any mobile objects including vehicles over telecommunications
system.

Large amount of work has been done to develop automatic vehicle locating system,
but the present architecture has certain limitations. The Metadata about the resources
(sensors, processors etc.) are stored on the central directory server, which makes the
server less scalable. Another problem is the inability to maximize the utilization of the
useful and critical resources like sensors, processors, memory, and storage media,
which remain idle for most of the time. These resources could be utilized to perform
certain computation intensive tasks [8][9] like:

• Prediction of wear and tear of roads.
• Prediction regarding the usage of vehicles during festival time and to plan for

management of vehicle route accordingly.
• Data mining on traffic data, vehicle data etc gathered from the AVL systems.

56 D. Shah, D. Patel, and S. Chaudhary

• Traffic analysis to predict severity of injury, incident management, identification
of a driver and vehicle characteristics through data mining the highway crash data.

The present architecture is to be reformed to provide support for these applications,
by including the support of Grid Computing.

4 Distributed Computing Technologies

Several distributed computing technologies exist to address the said problem. Some of
these technologies are compared and use of grid computing is justified below.

4.1 Client Server Technology

It is a network architecture in which server node(s) serves the various client requests.
The processing is done on the server nodes only. It uses 2-tier architecture and suffer
from several problems like scalability, server overloading, inability to utilize the
client processors, which normally remains idle for most of the time, centralized
control (security etc), single point of failure, transparency to users, lack of co-
ordination among servers to solve a particular problem. Client/server technology is
not suitable to solve the above mentioned problems for AVL systems.

4.2 Cluster Computing

It is a network architecture, which uses a group of connected processors that work
together as a parallel computer to solve a given problem. They revolutionized the
parallel computing technology. A cluster may consist of multiple nodes; each node is
consisting of one or more processors. The memory, disk and devices of a node may be
shared among all the processors in a cluster. Cluster computing is primarily concerned
with computational resources and clusters usually contain a single type of processor
and operating system. Clusters typically contain a static number of processors and
resources. Clusters are physically housed in a same complex in a single location. The
technology to interconnect nodes in a cluster delivers extremely low network latency,
when nodes in a cluster are not physically close.

4.3 Peer-to-Peer (P2P) Computing

Computing paradigm in which each peer i.e. each participating computer can act both
as a client and as a server in the context of some application. P2P system lacks a
central point of management, which makes it ideal for providing anonymity and offers
some protection from being traced. The lack of centralization in P2P environments
carries two important consequences:

1. P2P systems are generally far more scalable than grid computing systems.
2. P2P systems are generally more tolerant of single-point failures than grid

computing systems.

This means that the key to build grid-computing systems is finding a balance between
decentralization and manageability. Also, while an important characteristic of grid

 Grid-Based Vehicle Locating System 57

computing is that resources are dynamic, in P2P systems the resources are much more
dynamic in nature and generally are more fleeting than resources on a grid. Utilization
of the distributed resources is a primary objective for P2P and Grid Computing. A
final distinction between the two systems is standards. The general lack of standards
in the P2P world contrasts with the host of standards in the grid universe. Based on
the mutual benefits that grid and P2P systems seem to offer to each other, we will use
both approaches to design the AVL system [10][11].

4.4 Grid Computing

A system in which there are shareable coordinated resources that are not subject to
centralized control that uses standard, open, general-purpose protocols and interfaces
to deliver non-trivial quality of service [12][13][14]. Grid computing will provide
seamless, transparent, secure access to IT resources such as hardware, software,
scientific instruments, and services etc. We will use the resource discovery
mechanisms of peer-to-peer and resource sharing mechanisms from grid computing to
include the advantages of both peer-to-peer and grid computing technologies.

5 Co-operative Distributed Web Services

Traditional techniques for a distributed web server design rely on manipulation of
central resources, such as routers or DNS services, to distribute requests designated
for a single IP address to multiple web servers. The goal of the Distributed
Cooperative Web Server (DCWS) system development is to explore application-level
techniques for distributing web content. The techniques to implement DCWS are
discussed in [15], which are listed below:

• Hyperlink Graph
• Entry-Points Hypotheses
• Lazy Migration

Any of the techniques can be applied to our vehicle locating system since there are
certain cases where the use of Distributed Cooperative Web servers is required. The
information kiosks and PCs will connect to a central web server on which a default
portal of vehicle locating system will be hosted and is responsible for distributing the
requests to other web servers with whom, the data requested by the end users, will be
stored. This technology will not be useful when only mobile units are incorporated
into the system since the location of the end-user is available through which the
request may be directed to their respective web servers.

6 Computational and Data Grid for Vehicle Locating System

A computational grid is a hardware and software infrastructure that provides the
dependable, consistent, pervasive, and inexpensive access to high-end computational
capabilities. We suggest the development of computational grid to yield several
advantages in vehicle locating system, like increase in demand-driven access to
computational power for data mining applications, which are described in section 13.

58 D. Shah, D. Patel, and S. Chaudhary

In addition to computational grid, we also suggest to develop the data grid
infrastructure on the computational grid infrastructure. Data grid is the architecture
for distributed data management [16]. In vehicle locating systems, the vehicle transit
data acquired through the telematics installed in each vehicle, are distributed at
various locations. Depending on the number of vehicles in each region, this volume of
the data will increase to terabytes. To support the analysis of this data and figure out
the trends, data needs to be accessed and analyzed. This combination of large dataset
size, geographic distribution of users and resources, and computationally intensive
analysis results in complex and stringent performance demands that are not satisfied
by existing data management architectures. Thus, there is a need for data grid to
overcome these limitations.

7 Functionalities in Proposed System

7.1 Assumptions

• We have assumed that Geographical Information System (GIS) is installed at
each regional vehicle control center and GIS database is distributed to each
regional vehicle control center.

• A satellite is available to transmit the data.
• We use the existing mobile network framework to route the data.

We propose the architecture of grid-based vehicle locating system in which
following functionalities are envisioned:

1. End Users/citizens should be able to locate the vehicle/bus by giving appropriate
selection parameters like source, destination, bus identification, route etc.
through mobile handsets/ PCs/ Information kiosks.

2. Passengers/bus driver is able to send information regarding the status of the
vehicle, e.g. information about accident, route, passengers through the telematics
installed in the vehicle to the respective regional vehicle control center.

3. The regional vehicle control centers are able to poll the status of the vehicle, able
to reprogram the interval of the status information to be sent to the vehicles.

4. All regional vehicle control centers are able to utilize the existing processing
power and storage media present in the organization created by inter-
connection of all regional vehicle control centers for several computational and
data intensive analysis.

5. Vehicle control centers of various states are able to retrieve and store the
knowledgebase gathered from several regional servers connected to it and share
it with other state vehicle control centers.

8 Proposed Architecture

The architecture of the proposed system is shown in figure 1. The components of the
telematics to be installed in the vehicle are described below:

 Grid-Based Vehicle Locating System 59

 11.

 11.

Internet

GPS mobile unit

mobile w/o GPS

Information kiosk

Mobile stations

State Server

State Server

MTS WAP Server

Central Web Server

Regional Web server

Regional vehicle control center

MTS WAP Server

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 1. Architecture of Grid-based vehicle locating system

1. GPS Satellites: The Satellites continuously transmit the signals, which would
be useful to locate the device. There are several techniques to locate the mobile
devices [6]. To receive the signals from satellites, special GPS receiver is
installed in the telematics.

2. GPS mobile unit (telematics): This component actually receives the GPS data
from satellites, and processes it and again transmits in the form of mobile radio
signals through special mobile radio transceiver installed in it to the regional
mobile base stations of mobile service provider. See Fig. 2.

3. Mobile handset without GPS unit: This component is meant to browse
through the information about bus/vehicle location and other details. This
device does not transmit any kind of location information to regional vehicle
control center. It transmits requests to the nearest mobile base station of the
mobile service provider.

4. Information kiosks: This device is installed at particular predefined locations,
which are not nomadic. These devices are meant for browsing the vehicle
information for the citizens, who are not able to use the mobile phones to
access the vehicle information.

60 D. Shah, D. Patel, and S. Chaudhary

GPS antenna

GPS Receiver

Mobile radio
transceiver

Microcontroller
ROM

RAM

User Interface Screen

EEPROM

PANIC INFO START/STOP CANCEL

Fig. 2. Components of ‘telematics’

5. Personal computer: End user can access the vehicle information through the
personal computer connected to Internet. It uses a modem to convert the digital
data to analog and analog to digital so as to render suitable for transmission
through PSTN.

6. PSTN (Public Switched Telephone Network): This network basically carries
the information about the end user’s requests to regional servers and vehicle
information from regional servers to the end users. This network will be useful
when requests comes from any of the devices.

7. Mobile stations: The tower basically routes the vehicle information, location
information etc from mobile vehicles to other mobile station (if not in same
region) or to nearest mobile switching office, where data is intercepted by
WAP (Wireless Application Protocol) server to convert it into TCP/IP (Trans-
mission Control Protocol/Internet Protocol) format so as to make suitable to
transmit in internet to the nearest regional vehicle control center.

8. Internet: We assume that Internet infrastructure exists for routing the requests
for vehicle information. Information kiosks as well as PCs are connected to
Internet.

9. Mobile Telephone Switching Office (MTSO) WAP server: This server
basically converts the wireless data, which is in the format of 802.11 wireless
protocols standard into the HTTP protocol so as to connect to regional vehicle
control centers via web servers. This data/information generated by mobile
devices basically are routed to the respective regional vehicle control center for

 Grid-Based Vehicle Locating System 61

their requests to be served. This functionality is due to the fact that the mobile
system has the capability to locate the mobile device. Thus, by taking advent-
age of the mobile network infrastructure, the data are routed to their respective
regional servers in which they are originated.

10. Central web servers: It is a central web server to resolve various queries of
the end users. The requests are transferred to the respective regional vehicle
control center web server. The web servers in this architecture are distributed
co-operative web servers for which various strategies for routing the requests
exists.

11. Regional vehicle control center: It consists of web services, database server,
grid middleware to carry out various functionalities. Each center hosts the
distributed GIS database used to provide information about the location
features. The bus information, route and schedule information of the bus
belonging to the respective region is also hosted by these servers. The data grid
is developed on the basis of computational grids. It is consisting the resources
of regional vehicle control center. We suggest to install grid middleware at
each regional vehicle control center. These centers also host the distributed
web services for which the requests may come from central web server or
directly from end users. The data mining services to be executed periodically
to perform traffic analysis.

12. State control center: It stores the knowledgebase about traffic that is useful in
various applications. All regional servers are connected to one state server with
leased line employing fibre optics technology. It consists of database servers
where the knowledgebase is stored and all the servers are interconnected.

9 Grid Components in Vehicle Locating System

Essential grid components for the grid infrastructure are suggested to develop the
grid of processors and storage media available in all regional vehicle control centers.
The major services to be provided as a part of grid infrastructure are described
below:

9.1 Grid Information Services for Vehicle Locating System

The major components of this service are information providers and information
subscribers [17][18]. The information providers are those whose resource has to be
utilized to carry out the task. The information subscribers are those who wish to be
informed about the availability of a resource. The protocols for querying about
resources include GRIP (Grid Resource Information Protocol) and GRRP (Grid
Resource Registration Protocol) [18]. The vehicle locating system will include the
aggregate directory servers located at each region that will keep information about
the resources provided by the information providers. Each regional vehicle control
center will include the aggregate directory services, which will keep information
about the resources available in that particular regional center. The information

62 D. Shah, D. Patel, and S. Chaudhary

subscribers of a particular regional control center will request the local aggregate
directory services to provide the information about the resource availability to
fulfill the processing or data demands for a job to be completed. Information
providers in the similar manner will provide the information about the status of the
resources to their local aggregate directory services. The directory server may not
be a separate server, it can run as a service also. The clients (information
subscribers) needs to register itself in the grid and notify its availability through
GRRP to their local aggregate directory server and access information about the
resources through GRIP.

9.2 Grid Resource Management Services

Several architectural models have been proposed for grid resource management
[19][20][23] in which hierarchical, abstract owner and computational market/economy
model are proposed. The hierarchical model is well-established model to realize the
resource management in grid. We suggest to select hierarchical model. Each regional
center in our system must include the resource broker, which handles the discovery of
resources, selection of best resources from the discovered resources, mapping of tasks
to the resources, staging the applications and data for processing and gathering the
results.

9.3 Grid Data Management Services

The data grid established over the computational grid infrastructure, requires several
additional services like replica management, replica selection and metadata services
as high-level components that use the underlying grid infrastructure. Core services
that must be provided to enable data grid support for vehicle-locating system includes
storage systems, data access services, and metadata access services. Metadata access
service includes application metadata, replica metadata and system configuration
metadata [21].

9.4 Grid Security Services

We assume that grid middleware includes the GSI (Grid Security Infrastructure)
Implementation [22].

while(true)
{
 // process incoming message
 receive_message(X)
if(validate_message(X))
 //update the data structures that keep the awareness information
 //in node
 {

if(X is status message of particular resource)
 { get the list of local subscribers Z

 if(X was subscribed by any of the local
subscribers in list Z)

 Grid-Based Vehicle Locating System 63

 {
 send the status message to the
 respective node in the list Z
 return from the funtion

 }
 }
 }
else
 { timeout(n)
 }

if(currenttime>lastsenttime + n)
 { lastsenttime=currenttime
 //send to logical neighbor aggregate directories
 get the list of neighboring nodes (aggregate directories) y
 for each node in y
 send status update message
 }

}

10 Information Dissemination in the Grid

The data to be processed and information of the resources available in the grid needs to
be disseminated to the relevant information subscribers. Several methods exist for
information dissemination in grid and peer-to-peer computing [24][25]. Below are the
models:

Polling Model: Information subscriber will query at specific period of interval, to the
known servers for the resource availability or information.

Event Based Model: Information providers will notify the clients, who need the
information about the resources or data as and when they are free or available
respectively. This model is further refined into Publisher/Subscriber Model.

Publisher/Subscriber Model: The publishers are information providers or pro-
ducers of events/notifications. The subscribers have the ability to express their
interests in an event or a pattern of events, and the system provides them with every
event fired by a publisher matching their registered interest. This model can further
be classified into:

1. Topic/Subject-based model.
2. Content-based model.

11 Logical Model

Main objects are identified in the systems and the design is clarified by developing
the class diagram of this system. The class diagram is shown in Fig. 3.

64 D. Shah, D. Patel, and S. Chaudhary

GPS Receiver

State Vehicle Control
Center

Vehicle Depot

GPS Mobile

1

1

1

1

has

MicroController

Mobile Radio Transceiver

Memory

Display Panel

Vehicle

1..n

1

1..n

1

Owned by

Telematics

1 11 1
Consists of

11

consists of

1

1

1

1

Consists of

has a

1

1

1

1

contains

1

1

1

1

consists of

Mobile

Regional Vehicle Control
Center

1 1..*1 1..*

is associated with

1 1..n1 1..n

Managed by

Pass enger

1 0..n

Travel in a

User

11 11

Use

PC_Kiosk

1

1

Use

1

1

Web Server

1

1.. n

1

1.. n

Mapped to

MTSO

1

1..n

1

1..n

Connected to

1..n

1

1..n

1

Interact with

1

1..n

1

1..n

Link ed t o

1.. n

1 Link ed to

1.. n

1

0..n1

Fig. 3. Class Diagram

12 Algorithm for Information Dissemination in a Grid-Based
Vehicle Locating System

This algorithm is written to disseminate the information about the computational
resources to the respective subscribers.

12.1 Assumptions

1. The information/data dissemination occurs between the regional servers that
will be used for various data intensive application, e.g. traffic analysis.

2. Information provider is a service, which provides the information about the
resources.

3. Information subscriber is a service, which subscribes itself for a particular
event/information.

4. The regional servers are interconnected through the private network.

12.2 Algorithm

1. Information provider registers with the local aggregate directory service to
provide the information about the resource(s).

 Grid-Based Vehicle Locating System 65

2. The aggregate directories are organized in a hierarchical manner (see Fig. 4.) to
avoid single point of failure and to provide easy location services.

3. Subscribers subscribe to their local aggregate directory for the particular event
to be delivered via GRRP.

4. The providers also dynamically register themselves to their local aggregate
directories.

5. The local aggregate directories will disseminate the subscriber’s interests to the
neighbor aggregate directories depending on neighborhood size.

6. The algorithm uses neighborhood awareness [26]. It checks the distance from
source to the current node and discards the message, if it exceeds the pre-
defined limit (as described below). The below code runs in each aggregate
directory.

D

D

D D

D

DD

P

P

PPP

P
P

P

PS

P S

SS S Subscriber

P Provider

D Aggregate Directory

D

Fig. 4. Hierarchical topology of aggregate directories

13 Applications

Grid-based Vehicle Locating System will be able to provide the support for various
critical functionalities:

1) The data that is collected at regional servers can be mined to extract the useful
information.

2) Traffic analysis can be performed. The prediction of severity of the injury with
the help of accident data can be made to take the effective rescue operations.

3) Incident management system can be developed to estimate the number of
vehicles required, predict travel time, and provide the logistics.

66 D. Shah, D. Patel, and S. Chaudhary

4) Identification of driver and vehicle characteristics through data mining the
highway crash data.

5) To predict wear and tear of roads during a season.

14 Conclusion and Future Scope

In this paper we have proposed the architecture of Grid-based vehicle locating system.
It will utilize the wireless technology, internetworking and grid computing technology
to maximize the utilization of resources distributed over the network to improve
efficiency, pervasiveness, enable more data and processor intensive applications.
Various grid-components that are critical in the functioning of this system are
identified to justify the usage.

The system can be modified to provide the useful information to the government
regarding the usage of the vehicles during festival time to plan in an effective manner.
Route adjustment mechanisms to be developed to plan for alternative routes in case of
emergency situations. Appropriate algorithms can be developed for route adjustment
mechanisms.

References

[1] Greenfeld, J., “Automatic vehicle location (AVL) for transit operation,” Electro technical
Conference, 2000. MELECON 2000. 10th Mediterranean, Volume: 2, 29-31 May 2000.

[2] Burch, R.C; “Automatic Vehicle Location System Implementation” Position Location
and Navigation Symposium, 1996, IEEE 1996, 22-26 April 1996.

[3] Sankar, R.; Civil, L, Southeastcon ‘97, “Intelligent traffic Monitoring system using
wireless cellular communications,” Engineering New Century, Proceedings. IEEE, 12-14
April 1997.

[4] Bonora, S.; Engels, D., “Guidelines for the use of GPS-based AVL systems in public
transport fleets,” Public Transport Electronic Systems, 1996, International Conference on
(Conf. Publ. No. 425), 21-22 May 1996.

[5] Taylor, S., “Developing automatic vehicle location systems,” Computing & Control
Engineering Journal, Volume: 14, Issue: 1, Feb. 2003.

[6] Yilin Zhao, Senior Member, IEEE, “Mobile Phone Location Determination and Its
Impact on Intelligent Transportation Systems,” IEEE Transactions on intelligent
transportation systems, vol. 1, No. 1,March 2000.

[7] Yilin Zhao, “Telematics: Safe and Fun Driving”, IEEE Intelligent Systems, January-
February 2002, p.10-14.

[8] Miao M. Chong, Ajith Abraham, Marcin Paprzycki, “Traffic accident analysis using
decision trees and neural networks.”

[9] Der-Horng Lee1, Shin-Ting Jeng and P. Chandrasekar, “Applying data mining techniques
for traffic incident analysis,” Journal of The Institution of Engineers, Singapore, Vol. 44
Issue 2 2004

[10] Karl Aberer, Manfred Hauswirth, “Peer-to-peer information systems: concepts and
models, state-of-the-art, and future systems.”

[11] I. Foster, Adriana Iamnitchi, “On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing.”

[12] S Foster, I., “Internet Computing and the Emerging Grid,” Nature Web Matters, 2000.

 Grid-Based Vehicle Locating System 67

[13] Foster, I. and Kesselman, C. (eds.). “The Grid: Blueprint for a New Computing.”
Infrastructure.” Morgan Kaufmann, 1999.

[14] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, K. Vahi, “The Role
of Planning in Grid Computing,” ICAPS 2003, 2003.

[15] Scott M. Baker and Bongki Moon, “Distributed Cooperative Web Servers.”
[16] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid:

Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets.” Journal of Network and Computer Applications, 23:187-200, 2001
(based on conference publication from Proceedings of NetStore Conference 1999).

[17] Kerschberg, L.; Gomaa, H., “Data and information architectures for large-scale
distributed data intensive information systems,” Menasce, D.; Jong Pil Yoon; Scientific
and Statistical Database Systems, 1996. Proceedings, Eighth International Conference
on, 18-20 June 1996.

[18] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

[19] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail, L.
Pearlman, “A Metadata Catalog Service for Data Intensive Applications,” G. Singh, S.
Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail, L. Pearlman.
Proceedings of Supercomputing 2003 (SC2003), November 2003.

[20] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke, “A
Resource Management Architecture for Metacomputing Systems,” Proc. IPPS/SPDP ‘98
Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-82, 1998.

[21] Bill Allcock1 Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster1, Carl
Kesselman, Sam Meder, Veronika Nefedova1 Darcy Quesnel1 Steven Tuecke, “Data
Management and Transfer in High -Performance.”

[22] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S., “Security Architecture for
Computational Grids.” In ACM Conference on Computers and Security, 1998, 83-91.

[23] Buyya R., Chapin S., DiNucci D., “Architectural Models for Resource Management in
the Grid.”

[24] Datta, A.K.; Gradinariu, M.; Raynal, M.; Simon, G, “Anonymous publish/subscribe in
P2P networks”, Parallel and Distributed Processing Symposium.

[25] Peter R. Pietzuch, Jean Bacon, “Peer-to-Peer Overlay Broker Networks in an Event-
Based Middleware.”

[26] Maheswaran M.; Krauter K.; Lecture Notes In Computer Science, Proceedings of the
First IEEE/ACM International Workshop on Grid Computing, Pages: 181 - 190 Year of
Publication: 2000

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 68 – 78, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Guadalajara Urban Traffic Control
Project – An Overview About Features and Needs

for Tomorrow’s Mobile City Communities

Helena Unger

Departamento de Sistema de Información,
Centro Universitario de Ciencias Economicas y Administrativas (CUCEA),

Universidad de Guadalajara (UdeG),
Anillo Periférico Nte. No. 799, Núcleo Los Belenes, Zapopan

helena@cucea.udg.mx

Abstract. The current contribution gives an overview on the different complex
and concatenated aspects and problems of traffic control in large urban
environments with a high population and traffic density. It intends to show that
without innovative, Internet based technologies no suitable simulation, analysis
and control of the urban traffic situation in a big city can be realized, especially
under the conditions of third world countries.

Beside the introduction of a new, GRID based simulation it will be
conceptually discussed, how existing infrastructural and other low cost concepts
may be used to achieve significant improvements for every member of the local
population community.

1 Introduction

Congestion in urban transportation systems has reached unprecedented levels.
Transport problems have become more wide-spread and severe than ever in both
industrialized and developing countries alike. Accidents kill tens of thousands of
individuals each year, and pollution from vehicle emissions degrades the quality of
life of every citizen. Transportation systems have broad, far-reaching economic and
social impacts in our modern society. Travel delays are a constant source of stress,
frustration, and dissatisfaction to the commuting public every day [1].

In particular, Guadalajara, the capital of the Mexican state of Jalisco shall be
considered. The metropolitan area of Guadalajara is mainly formed by Guadalajara,
Zapopan, Tlaquepaque, and Tonala. In addition, there are suburban areas which signi-
fycantly affect Guadalajara’s metropolitan area traffic conditions such as Tlajomulco,
El Salto, Juanacatlan and Ixtlahuacan.

With its today’s population of more than 7 million persons, Guadalajara metro-
politan area is the second biggest and important city in México. However, the
Guadalajara metropolitan area is also a very dynamic, fast developing system: in 1980
this area had a population of 2,3 millions people, while in 2000 already approximately
3,5 millions lived here.

 The Guadalajara Urban Traffic Control Project 69

The amount of private cars per one thousand of population grew from 111, 4 at 1980
until 217.9 at 2000 and Guadalajara’s population still increases 2.3% every year [2, 3,
4]. Nevertheless, the Guadalajara area has not so such a dramatic congestion situation
like most large cites of Europe or USA because 68% of all trips are still realized with
public transport, 30% are private cars and 2% others transport media. Buses compose
30% of traffic flow [2].

Consequently, there is currently an ongoing controversy discussion especially in the
area of improving public transport operations, e.g. what routes should be realized, with
which capacity of buses and with which schedules [5].

The work consists of two parts which also give the structure of the present paper. At
first, the real sources of traffic problems must be analyzed and suitable alternatives must
be developed. Due to the danger of experimenting with operational systems and the
limitations of purely analytic techniques, effective modeling and simulation tools are
essential to solve these problems. The respective concepts and the used distributed
GRID based simulation architecture is described in the following section 2 of the article.

On the basis of the achieved results, the respective traffic control and communi-
cation systems may be realized. The used innovative architectural concepts are the
subject of the considerations in section 3. A summary of the currently done work and an
outlook on the next steps conclude this presentation.

2 Simulating Large Urban Traffic Systems

2.1 Main Concepts

Urban planning is not easy: People simultaneously want to have access to
transportation and not be bothered by it. This is a contradiction which is not easily
resolved, in particular not in densely populated areas. Urban and transportation
planning are the disciplines which deal with this contradiction.

In addition, any software package designed to help with these questions needs to
address the fact that humans are “intelligent” and are able to adapt and to learn and
to react on any available situation. One example in the realm of transportation
planning is called induced traffic, i.e. the fact that better streets or better train
connections leads to more traffic. That is why transportation planning is not an
exercise of how to best deal with a given and fixed demand, but it has to balance the
interests of people using the transportation system with the interests of people
suffering from it [6].

More than 80% of the users use traffic simulation for design and testing of control
strategies. The second most common application for traffic simulation is the
evaluation of large scale schemes (45%) for. 20% of the users use traffic simulation
for on-line traffic management or for evaluation of product performance. Other areas
of application are research and education [7].

So, the optimization of the Guadalajara Urban Transport System can be realized
solving the following main tasks:

1. Analysis and Design of Transportation Systems.
Simulation is used extensively to evaluate the needed changes in the entire trans-
portation system. This includes e.g. the addition or modification of road-ways, the

70 H. Unger

control algorithms of traffic lights, changes in the schedule of the public transport as
well as the introduction of an Intelligent Transport System (ITS).

The typical goals of these simulative studies are to assess the impact of the
proposed change on efficiency, safety and pollution.

2. Traffic Management.
Basing on the made simulations, later the transportation system must be
changed. This includes changes in the road network as well as infrastructural
changes (i.e. all systems which influence the traffic flow like traffic lights,
sensors, signposts as well as communication possibilities between participants).
Hereby, the simulation is used as a tool to evaluate different approaches before
their realization.

A good approach to such complex problems is multi-agent simulations. For a
multiagent simulation all entities, in particular the travelers, are resolved individually
and carry all the information about the simulated system. Consequently, they have
internal rules according to which they make decisions and move inside of a synthetic,
simulated environment.

The most advantage of this agent-based, microscopic approach is that it can be
easily improved by locally limited changes if it is mentioned that it is not realistic
enough in certain aspects. This is the most difference to all other methods, which
eventually reach a level where more details can not included any more. In addition, if
once one has accepted the microscopic or agent-based paradigm, one can start very
fast and with rather simple models a good simulation.

Roughly considered, microscopic models consist basically of two main components:

• an accurate description of the road network geometry including traffic facilities
as traffic lights, traffic detectors,

• a very detailed modeling of the traffic behavior, which reproduces the dynamics
of each individual vehicle, distinguishing between different types of vehicles
and offering the possibility to take behavioral aspects of (classes of) vehicle’s
drivers into account.

In detail, any multi-agent package have not only to contain the traffic micro-
simulation, which moves vehicles and travelers through the system, but also modules
for route planning, for activity generation, and, most importantly, for human learning.
It is not claimed that the resulting transportation simulation package is calibrated and
validated [8] in advance and thus useful for any policy questions. However, it is
certainly complete enough to do computational research with respect to methodo-
logical and computational questions and it will be the definite starting point for our
project. In particular, it is possible to replace the modules one by one by more realistic
ones and still keep the structure of the whole system intact.

Finally can be figured out that microscopic simulation models are a better re-
presentation of the reality and reproduce the traffic system much better [6]. Only with
this approach the wide range of traffic scenarios appearing in the Guadalajara area can
be considered. Since the whole model is divided in small local and therefore easy
manageable units, precise descriptions of all traffic structures and traffic management
schemes can be explicitly included and validated (what is definitely impossible with
all other models and the huge dimension of the considered area).

 The Guadalajara Urban Traffic Control Project 71

The creation of this multi-agent simulation model of our urban transport system
requires having all input information which is necessary for the creation and validation
of the model. Due to the activities of CEIT and OCOIT [2, 3] a complete statistics is
available, which make the intended work possible. In such a manner, the Guadalajara
metropolitan area is unique and one of the few possible test-beds for such a project.

Processing such models for a large number of individuals and their mutual
influences normally result in huge resource requirements and long simulation times,
even when powerful parallel or distributed architectures are used.

2.2 Existing, Distributed Simulators

As mentioned above, to model the huge, complex transportation system of Guadalajara
with the needed exactness, only a micro-simulation approach can be used [9].

Using this method means to represent every agent, object or microscopic entity in
its respective environment. In this case every car (with the special behavior of its
driver), every bus, every traffic light or anything that takes part or influence the
Guadalajara’s traffic is an agent in a big multi-agent system. The behavior of every
agent must be modeled either separately or by a subclass, from which the generation
of the particular agent maybe derived. It is clear that in such a case the simulation of
the Guadalajara traffic requires the generation of up to 10 million agents and their
handling. That is why the simulation becomes very time consuming and needs the
respective computational power which can be only obtained from a massively parallel
or distributed [10] GRID architecture; the below table give an overview on existing,
similar solutions [11].

Since the performance of existing tools was not sufficient, a new micro-simulator
was developed within the last several years. The developed and verified simulation
architecture will be introduced in the following section.

Project Number
of agents

Number
of links

Number
of CPU’s

Speed
up

RTR1 Hardware Source

PARAMICS [12] 120 000 32 3 Cray T3E. http://www.paramics-
online.com/

TRANSIMS [13] 100 000 20 000 32 65 PC cluster
with 100MB
Ethernat

http://transims.tsasa.lanl.
gov/

AIMSUM2
[14, 15]

8 3,5 Shared
memory
architecture

http://www.aimsun.com/
aimsun.html

VISSIM 160 km
freeway
network

13 6 Cluster PC http://www.ptv.de/

MATSIM [11] 162464 28 624 32 770 32 dual CPU
PC+Myrinet.

http://www.matsim.org/

1 Real time ratio (RTR) – describes how much faster than reality the simulation is. For

example, an RTR of 100 means that 100 minutes of traffic are simulated in 1 minute of
computing time. This number is important no matter if the simulation is parallel or not.

72 H. Unger

2.3 Structure of the Developed Simulation Tool

The software package using for modeling and simulation of Guadalajara transport
system based on previous activity-based modeling projects like TRANSIM [13] and
MATSIM [11]. Derived from made experiences, the developed (distributed) software
package has the following modules:

Fig. 1. The adapted MATSIM module structure for the Guadalajara’s traffic project

• Population Generation:
The model uses the demographic data and generates the agents representing the
persons for the further simulation. This information is based in census and the
typical data such as gender and age.

• Activity Generation:
The Activity Generator module generates a list of activities for each member of
a synthetic population [16, 17]. Each activity consists of a type and priority and
this team decides based on the Synthetic population the start and ending time
and currently we use an OD matrix for this task.

A modus sub-module is to specify a transportation mode for each activity
depending on certain values, which could be economical status, distance,
comfort, etc.

• Route generation:
This module generates the routes that an agent should follow depending on
where he must start his activities and where he must end them. In our project
we have two routers, one for vehicles (including cars and buses) and second
providing routing of passengers (persons using buses).

• Micro Simulation:
The input of this module is the city map and the agents with their plans. It
outperforms the mobilization of each one of the agents. This module gives an
output of which feeds the route generation in order to perform some re-planning.

Population
generation

Activities
generation

Traffic
micro-

simulation

Router
for

vehicle

Router
for

persons

Visualization

 The Guadalajara Urban Traffic Control Project 73

• Visualization:
This module present all results in a suitable manner on the screen. Possible are
animations, diagrams and rough data within tables.

Currently, a GRID-cluster of 24 Pentium PC’s connected via Internet is used,
which is freely scalable. The software package was developed with Java, for
communications between the nodes and the library standard RMI and the TCP/IP
protocol are used. Differing to other systems, a good scalability could be achieved
since simple master slave architecture was used. Therefore, a (more complex than
usual) BrainModule controls all simulation process as master process. Differing to
classical master processes, the BrainModule also provides the feedback for re-routing
and re-planning mechanisms.

Fig. 2. The representation of the simulation environment for the Guadalajara’s traffic project

3 Concepts for an Urban Community Traffic Control

3.1 Frame Conditions

From the above said become clear that a successful traffic simulation, analysis and
control is more than just building a powerful simulation tool. Indeed, it needs a co-
operation of a big community of scientists form different disciplines as well as a well

74 H. Unger

optimized communication with the local population. In such a manner, the local
community will influence the computation and vice versa.

Especially in third world countries, financial aspects may play an important role
for the realization of the intended traffic control projects. While mobile phones are
already well established, navigation systems and whole city covering WLAN systems
may not be available to all or at least a large group of people.

Finally must be mentioned that usually used centralized computing systems have
already reached their performance limits in large urban environments and the
possibilities to react on a fast changing infrastructure as well as to compensate a
higher number of system faults are no more satisfying. In addition, the costs for a first
installation of such system are too high for most cities.

The below subsections will therefore give an overview on the new developed
systems, which will now be used within our project.

3.2 Low Cost User Communication

A first important point is definitely the data collection within the system. While
contemporary traffic sensors and processing units may measure most physical
parameters of the traffic flow, any other communications (e.g. to obtain exact
individual travel information) must be done either via existing or pretty cheap new
installed communication infrastructures (since they are needed in a mass). This can be
realized in the best manner on the basis of existing Internet and mobile phone
connections allowing a personalized communication with the respective traffic
processing and control computers. However, wireless LAN solutions and mobile ad-
hoc-networks may also be used and included in that system in the future.

On the first point stands the data collection from the daily commuters in order to

• …have well qualified and personalized data for the modeling and simulation
process

• …support navigation hints to the commuters basing on experience, simulation
based predictions and current traffic situation as well.

Since no automated communication via navigation systems can be broadly implied,
the idea is that users use either the WWW or SMS via mobile phone to send their
travel plans consisting of

• its origin,
• its destination and
• the desired leaving time

to the respective traffic sub-centers (as we will later discuss, the new control system
structures bases mostly on decentralized structures). Based on the current
calculations, optimal routing suggestions, the travel time to be expected and some
special routing information can be given back. In the case of a mobile phone [18],
even on-line communication may be supported via SMS (and maybe for additional
payments) in case of larger changes of the traffic situation and available routes.

 The Guadalajara Urban Traffic Control Project 75

3.3 Data Collection from Public Transport Systems

However, to include and optimize public transport due to its high traffic load generation
within the considerations, also passenger movements must be measured (while normally
pedestrians are not considered). That is why additional communication units may be
placed in buses and other public transportation system [19], which allow to

• Collect reliable data about daily requirements (rides, times, frequencies)
• Adapt schedules to the changing needs
• Organize changes between different public transport systems
• Observe and compensate delays and cancellations due to technical and others

problems
• Keep customers informed about the current state and traffic situation

Fulfilling these tasks means to build a flexible but also cheap data collection and
communication system including every public transport medium (bus, tram etc),
information systems on selected stations and the transport companies. Differing to
today’s only-existing radio-based communication units the information system shall
be an automated one and work mostly driver independent.

One possibility therefore is the adaptation of the below shown wireless LAN based
communication system of the University of Rostock (Germany), in which the moving
buses and trams itself carry the information and may exchange them with other units
and may be connected - via the installed network access points – with the internet and
the central servers of the transport companies.

Consumer Station

Information flow

1

2

3

45
6

Injector Station
Fig. 3. A new public transport communication system (with high latency but low cost) [20]

Busses and other equipped vehicles need just to have an own embedded computer
with a normal, cheap WLAN card. So they may collect data on passengers, traffic,
traffic jams while moving through the urban environment. When passing one of the
consumer stations along the streets (other central points) the WLAN card may contact
the access point within the station and transfer therefore the collected data to the
Internet where they can be used. In addition, information can be also given by injector
stations to the cars (like route changes, closed streets etc). Although the latency may

76 H. Unger

be in the area of minutes (depending on the distance of the injector and/or consumer
station) this approach is pretty usual for the (comparable) slow moving traffic:
although no city-wide WLAN cover is needed, actual data can be obtained and no
large data storages are needed in the vehicles. In addition the system maybe used to
transfer online information and advertisements to the passengers, what maybe an
additional source of money.

Fig. 4. A decentralized crossroad system hardware to built a self-organizing traffic control
systems

3.4 A Concept for a Self-organizing Traffic Control System

Finally, Fig. 4 shows the heart component of the system – the traffic control units.
The needed system must be built in such a manner that it

• Is able to do the huge amount of computation in real time,
• Is robust,
• Is easily maintainable,
• Is fault tolerant,
• Is scalable,
• Is self-organizing and adaptive and
• Causes low costs.

That is why the development of a new concept for a traffic control is the heart of the
Guadalajara Urban Traffic Control Project. Such system can only base on small,
autonomously working crossroad systems which are connected wireless

Every system contains a local, small computer knowing the local environment street
map, measuring with local sensors the local traffic and controlling the traffic light as
well as the local electronic signposts. In addition this system is equipped with a
wireless LAN device, over which it may communicate with neighborhood crossroad.

A local computer with
its local algorithms & data

Communication with
neighborhood
crossroad
systems

Controlling
the
local

traffic light

Suggesting routes
to main distant and

local
destinations

Local traffic
information

 The Guadalajara Urban Traffic Control Project 77

4 Conclusion

The contribution gave an overview on the Guadalajara Urban Traffic Control Project.
It introduces a new simulation technique to model huge urban environments in an
adequate manner. The results of the made micro-simulations have shown that the
traffic city in such complex systems may be analyzed and that the results may be used
to improve the traffic situation significantly.

However, there are a lot of interactions between the simulated community and its
activities. They require a manifold communication between technical system and
people as well as system components on a low cost basis with standardized and well
accepted end devices. Internet and the respective additional wireless LAN-supported
technology with a new kind of self-organizing and adaptive algorithms may solve the
open problems in the near future.

Acknowledgements

The authors specially thank to the National Science and Technology Council
(CONACYT) and Universidad de Guadalajara for the support provided during the
realization of this research.

References

1. R. Fujimoto J. Leonard II, 2002. “Grand Challenges in Modeling and Simulating Urban
Transportation Systems” Proceedings of the First International Conference on Grand
Challenges for Modeling and Simulation (ICGCMS 2002), January 27-31, 2002, San Antonio.

2. “Movilidad. Una visión estratégica en la zona metropolitana de Guadalajara” Report of A
traffic investigation center in Guadalajara (CEIT), 2001

3. “Complicatón de resultados de las mesas de trabajo de las Jornadas de Movilidad Urbana
Sustentable” (CEIT), 2002, www.jalisco.gob.mx/organismos/ceit/agenda/index.html

4. Adriana I. Olivares Gonzále, Marco F. de Paolini “Globalización y Ciudad en América
Latina: debilidades y potencialidades”, Memorias del V Congreso de las Asociaciones
Latinoamericana Escuelas de Planeación, Urbanismo y Diseño Urbano.VI Congreso de la
Asociación Nacional de Escuelas de Planeación, Urbanismo y Diseño Urbano. 2003

5. Maria Luisa García Yerena “Guadalajara: procesos de la ciudad región y la planeación
urbana regional”, Memorias del V Congreso de las Asociaciones Latinoamericana
Escuelas de Planeación, Urbanismo y Diseño Urbano.VI Congreso de la Asociación
Nacional de Escuelas de Planeación, Urbanismo y Diseño Urbano 2003

6. Nurhan Cetin, Kai Nagel, Bryan Raney, Andreas Voellmy, 2001. “Large scale multi-agent
transportation simulations”, Proceedings of the Computational Physics Conference 2001
Aachen

7. Staffan Algers, Eric Bernauer, Marco Boero, Laurent Breheret, Carlo Di Taranto, Mark
Dougherty, Ken Fox and Jean-François Gabard Review of Micro-Simulation Models
August 1997, http://www.its.leeds.ac.uk/projects/smartest/deliv3.html

8. Lianyu Chu, Henry X. Liu, Jun-Seok Oh and Will Recker A Calibration Procedure for
Microscopic Traffic Simulation. (January 2004), CTSS WORKING PAPER SERIES
2004, http://www.its.uci.edu/its/Npub.html

78 H. Unger

9. Bryan Raney and Kai Nagel, 2004. “An Improved Framework for Large-Scale Multi-
Agent Simulations of Travel Behavior”, Institute for Computational Science, ETH Zurich,
May 2004

10. Henry X. Liu, Wenteng Ma, R. Jayakrishnan, Will Recker “Large-Scale Traffic Simulation
through Distributed Computing of PARAMICS “ CTSS WORKING PAPER SERIES
2004, http://www.its.uci.edu/its/Npub.html

11. Nurhan Cetin, Adrian Burri, Kai Nagel, 2003 “A Large-Scale Agent-Based Traffic
Microsimulation Based On Queue Model” 3rd Swiss Transport Research Conference

12. G. D. B. Cameron and C. I. D. Duncan. PARAMICS —Parallel microscopic simulation of
road traffic. Journal of Supercomputing, 10(1):25, 1996.

13. K. Nagel and M. Rickert. Parallel implementation of the TRANSIMS micro-simulation
Parallel Computing, 27(12):1611–1639, 2001.

14. J. Barceló, J. L. Ferrer, D. García, M. Florian and E. Le Saux, The Parallelization of
AIMSUN2 Microscopic Simulator for ITS Applications, 3rd. World Congress on
Intelligent TransportSystems, Orlando, 1996.

15. J. Barceló, J. L. Ferrer, D. García and R. Grau “Microscopic Traffic Simulation for ATT
Systems Analysis a Parallel computing Version”, 25th Anniversary of CRT/8/13/98,
http://www.aimsun.com/crtpap1st.pdf

16. Michael G. McNally, 2000, “The Activity-Based Approach” (December 1, 2000). Center
for Activity Systems Analysis. Paper UCI-ITS-AS-WP-00-4. http://repositories.cdlib.
org/itsirvine/casa/UCI-ITS-AS-WP-00-4

17. Xu, Min, Michael AP Taylor and Steve Hamnett (2003) “A microsimulation model of
travel behaviour for use in urban transport corridor analysis”, paper presented at the 10th
International Conference on Travel Behaviour Research, Lucerne, August 2003.

18. J.-L. Minoi, P. Green, S. Arnab, “Navigation Application with Mobile Telephony:
Shortest-path”, http://www.gisdevelopment.net/technology/lbs/techlbs008.htm

19. Bengsch, Andreas; Kopp, Heiko; Petry, Andre; Tavangarian, Djamshid. Evaluation of a
Communication Environment for High-Speed Mobile Wireless LAN-Clients. In: Unger,
Herwig, (Hrsg.), Innovative Internet Community Systems (I2CS), S. 1-9, Springer Verlag,
Leipzig, Juni2003.

20. D. Tavangarian “Ad-hoc mobile Wireless Local Area Networks” Piloteproject.

Towards P2P Information Systems

Magnus Kolweyh1 and Ulrike Lechner2

1 Universität Bremen, Fachbereich für Mathematik und Informatik
mag@informatik.uni-bremen.de

2 Universität der Bundeswehr München, Fakultät für Informatik,
Institut für Angewandte Systemwissenschaften und Wirtschaftsinformatik

Ulrike.Lechner@unibw.de

Abstract. P2P systems draw large communities of users and create
most of the Internet traffic. Two typical P2P myths are (1) that P2P
is about sharing of audio and video content and (2) that P2P networks
are only about sharing files between anonymous users. We present the
results of an empirical study in the P2P network Direct Connect. We
find that P2P networks are places to share all kind of data. We also find
that there is a significant amount of communication going on in P2P
networks.

1 Introduction

Currently, Peer-to-Peer (P2P) systems create most of the Internet traffic and we
see novel P2P platforms with various P2P clients to be announced on various
platforms. P2P systems are new and very popular types of distributed infor-
mation systems and distributed system technology is considered to be the next
step for many application areas. .NET or Grid Computing are technologies for
distributed information systems. They have been developed with professional
applications in mind. The main application area for P2P systems has been and
currently is file sharing.

P2P systems are very popular with users. Common P2P file sharing networks
seem to be the perfect prototype for distributed applications as they are popular
and serve a huge number of peers. This new distributed paradigm leads to a new
information system scenario with ubiquity and ad-hoc distribution of data. On
the performance and cost side, decentralized networks have several advantages
over traditional client-server platforms. In theory, these systems scale indefinitely
in terms of peers or data size without decreasing search time and without the
need for costly centralized resources [1, 2]. However, we observe selfishness of
nodes [3] as well as problems with content contribution, quality and availability
of content [4]. The business models of popular file sharing networks are neither
legal nor sustainable [5, 6].

We analyze first the kind of contents being shared and then the degree of
social interaction within P2P systems. We find that P2P networks are more than
mere and anonymous audio and video sharing networks. They are multi-purpose
content sharing networks in which users interact. Thus, we conclude that P2P

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 79–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 M. Kolweyh and U. Lechner

have the tendency to move towards information systems and this opens up new
chances for research and for applications.

This paper is organized as follows. We begin with an analysis of the state
of the art with a presentation of current research topics and key aspects of
P2P systems (Sect. 2); discuss their relevance and present basic challenges for
P2P from an information systems point of view. We identify two P2P myths -
commonly used assumptions of file sharing systems (Sect. 3) and present our
research approach (Sect. 4). We explore then the kind of data being shared in
P2P systems (Sect. 5) and the interaction within P2P systems (Sect. 6). The
paper concludes with a discussion of our findings (Sect. 7).

2 State of the Art and Literature Review

P2P networks are driven by applications and their success. In this section, we
review the state of the art, first in the development of P2P applications, then
the advances in P2P technology and, finally, in P2P business models.

2.1 The P2P Paradigm and P2P Applications

The area of P2P networks became popular with P2P file sharing applications as
(the original) Napster and gnutella in the year 2000. Those applications drew
huge communities to share an incredible amount of audio files [7].

As of April 2005, P2P networks are far more differentiated. P2P applications
are grouped to three areas: (1) File sharing, (2) Distributed Computing and (3)
Communication [1]. While mass media often name Napster, Morpheus, Limewire
and Kazaa as the most important file sharing systems, they are best sorted
by their protocol. Popular protocols are Gnutella, Fasttrack, Edonkey and the
recently developed Bittorrent [8].

Grid Computing and Seti@home belong to the P2P distributed computing
category and Grid computing is gaining momentum for professional contexts [9].

P2P communication is often associated with Instant Messaging Clients like
ICQ or Jabber. Skype, a P2P based telephony system, is one of the latest popular
applications in that field. Groove, is an example for a P2P collaboration tool.
There seems to be a new popular P2P application area Communication besides
file sharing. To sum up the development of P2P applications – P2P seems to
reach out for application areas beyond mere file sharing. So, what is done in
research and development to enhance P2P technology?

2.2 P2P Technology

On the performance and cost side, decentralized networks have several advan-
tages over traditional client-server platforms. In theory, these systems scale in-
definitely in terms of peers or data size without decreasing search time and
without the need for costly centralized resources [1, 2]. They utilize the process-
ing and networking power of a huge amount of nodes and these resources grow

Towards P2P Information Systems 81

proportionally to the network size. Each new node joining a network potentially
adds storage capacity, processing power and bandwidth to the network. Thus,
by decentralizing resources, P2P networks are able to virtually eliminate costs
that are associated with a large centralized infrastructure. Also, P2P networks
may have advantages concerning redundancy, robustness and performance.

Current research on technology in P2P systems tries to further expand those
performance and cost advantages. It focuses on various subjects like network
architectures [10, 11] Distributed Systems [12, 13] and scalable algorithms [14].
Improvements have been achieved on the low-level concerning efficiency, robust-
ness and scalability. Advanced implemented services are searching, indexing dis-
semination, rendezvous and redundancy concepts.

While improvements in efficiency, scalability, robustness and security seem
crucial for current applications, we need to deal with the emerging prospects
of P2P applications. There seems to be some gap between academically drafted
concepts for P2P and the design of most popular systems today. Distributed
Hash Tables (DHTs) are powerful build-in data structures used by many mod-
ern distributed concepts like CHORD [10] or CAN [11]. Despite their power
DHT’s are rarely seen in file sharing protocols so far, solely Freenet [15] and
Overnet implement DHT-like data structures. Recent file sharing applications
like, e.g. Gnutella, Kazaa and Edonkey would benefit from scalable search strate-
gies for their millions of connected peers but implement simplistic and therefore
inefficient protocols [2]. Also, the lately emerged Bittorrent uses relatively basic
concepts with network overhead and security slowdowns for data management
compared to CHORD-systems, whose efficiency has been mathematically proven
[10]. Bittorrent serves the need for a distributed file transfer service that works
similar as the central, easy-to use ftp but with enormous distributed power. The
Bittorrent protocol seems to be designed very plain with huge space for improve-
ments like reducing network overhead and security slowdowns. Bittorrent is used
for all kinds of file-sharing and this includes in particular the distribution of large
Open Source packages, like, e.g., like full Linux Distributions (Fedora).

The technical approaches are able to solve some of the network problems
of current P2P networks and enhance the special properties of P2P networks.
However, the success of a P2P network often seems to be rather independent of
the achieved network performance. Are there any sustainable business models
for this P2P technology?

2.3 P2P Business Models

P2P gets with its potential and the various challenges a lot of attention from
researchers, users and media industry [9]. Each of those groups seems has its
view. Media reports nearly every day on new attacks from the media industry
on P2P end users or whole networks and even researchers have to deal with the
illegal content in scanning typical P2P systems [6].

Research in information systems on P2P focuses on the business models. There
are several proposals for innovative business models and services as digital rights
management systems for P2P networks [6, 16, 17, 18]. Again, there seems to be

82 M. Kolweyh and U. Lechner

a gap between academic concepts and the development of the P2P sector as the
predominant applications seem to do fine without digital rights management and
sustainable business models.

Research on behavior of users reveals several obstacles to built sustainable
P2P business models. The imbalance between a small number of contributors
vs. a large number of sharing users, the lack of quality or the concentration
of queries and available contents on a small is being analyzed e.g. in [4]. Only
recently, P2P applications implemented some concepts and services to manage
interaction. There are virtual currencies (cf. Applejuice), concepts that force
users to keep parts of downloads online as long as they are trying to download
a piece of digital content (Bittorrent). Some networks are open on an invitation
only basis. Some networks rely also on (human) management of the interaction
(cf. Direct Connect [19]). Thus, there seem to be a problem with content and
user management within P2P systems. This lack of sustainable, legal business
models looks like a challenge in developing information systems as P2P systems.

We observe that the variety of P2P application increases and that novel appli-
cations in Grid Computing and communication gain momentum. We also observe
that P2P technology advances. However, there are no valid business models and
hardly any approaches to manage content and users in P2P networks. Thus, a
reality check, what is going on in P2P networks in terms of availability of con-
tent and communication between users is necessary — to see whether P2P is
still about sharing music.

3 Peer-to-Peer Myths - The Research Hypotheses

P2P gets with its potential and the various challenges a lot of attention from
researchers, users and media industry [9]. Each of those groups seems to have its
view. Media reports nearly every day on new attacks from the media industry
on P2P end users or whole networks and even researchers have to deal with the
illegal content in scanning typical P2P systems [6]. To equate P2P with illegal
music sharing seems to be lowest common denominator. Is this a P2P myth? We
question if that association is still that clear.

Hypothesis 1: File sharing systems are not single-purpose networks for sharing
audio (mp3) files or files of some particular data format. Today, P2P networks
are multi-purpose networks to share many kinds of digital content.

A second wide-spread assumption is that users try to act as anonymously as they
can due to the illegal nature of P2P systems. However, interaction and social
bonds are deeply rooted human needs and from research on virtual communities,
it is known that interaction and the social network that emerges from interaction
positively influences the quality of content and interaction [5]. To equate P2P
with anonymous users whose only interest is file sharing seems to be a common
perception – the second P2P myth. We would like to question whether P2P is
really about file sharing between anonymous users and whether P2P is about
file sharing at all.

Towards P2P Information Systems 83

Hypothesis 2: Users are willing to communicate and interact with other users
on a topic of interest. Thus, on P2P systems that are dedicated to a particular
topic we expect more communication between the users than in systems without
such topics.

4 Research Design

The Direct Connect network [19] is chosen as P2P network for our research.
Direct Connect has been released by Neo-Modus in November of 1999. Since then
Direct Connect has developed a steady user base. Unlike other P2P networks, its
user numbers have never exploded just to break down shortly after. This makes
it a good basis to study a “mature” P2P network with its content and users.

Direct Connect is a hybrid P2P network. Hubs provide the connectivity to
the Direct Connect network, do most of the network management and manage,
in particular, queries. Peers connect to the hubs and hubs may have hub rules.
I.e., peers can only connect to a hub, if they meet the hub rules. Those hub rules
are, e.g., share size (the amount of content a users is willing to share) or open
upload slots (the bandwidth a user is willing to sacrifice when sharing).

According to www.hublist.org, a list of registered hubs, Direct Connect has
approximately 2 million users worldwide on over 20000 hubs (November 2004).
Note that there is no need to register a hub.

In the first part of the study we collected and classified data from peers. We
classify data with a set of commonly known data extensions that we obtain from
the Internet extension data base http://filext.com. In the study, we collected
data from 4800 Peers over three days in October 2004 on selected hubs. The
hubs were randomly selected from a publicly available hub list of the Direct
Connect Network at www.hublist.org.

5 Peer-to-Peer = Illegal Music Sharing?

The first part of the empirical study is concerned with the kind of data being
offered for sharing. We connect with a modified client to the Direct Connect
network to collect data from peers. From the peers, we obtain for this first part
of the study the file lists. The file lists carry the file names of the files that a peer
offers. We are interested in the content types of the files from the file lists and
classify the files into content types according to their file extension. We collect
data on (1) Total volume of a content type, i.e., the sum of the size of all files
in a content type (total GB), (2) average size of files of a content type (average
MB) and (3) the total number of files (number) of a content type.

We utilize a set of on average 20 file extensions for 12 chosen data types
to classify the files of the peers file lists. Files without file extension are dis-
carded. Ambiguities are resolved by grouping ambiguous extensions to one of
the possible data types. E.g. a .class extension denotes a pure binary, a li-
brary of a java application, or an Internet file. Note, that this ambiguity and
its arbitrary resolution are not critical, because our interest is to what extent

84 M. Kolweyh and U. Lechner

Fig. 1. Popular classes of data on Direct Connect Hubs (log scale)

file sharing still is about audio and video files and the kind data being offered
in a P2P network.

Figure 1 depicts the results on the amount of data (total GB), the average
size of files (average MB) and the number of files (number) for audio files, video
files and files that neither belong to audio nor video types (other). We observe
that audio-type content is most popular according to the number of files, but
is only second position in total volume. Video content dominates in the average
size of the content category. Since an audio file is much smaller than a video file
(3.6 MB vs. 145.6 MB), the total amount of audio types is much smaller (1.4 TB
vs. 5.3 TB). The “other” file type comprises more files in total and by number
than the two popular file types audio and video together. We observe that users
share huge amounts of various “other”data like text data, source files, web pages
and images. That content outnumbers audio and video in terms of total number
of files but is less in total size than audio or video files (cf. Fig. 1). An analysis
of the other type (Fig. 2) reveals the variety of content types being offered in
the network.

Figure 2 details the other type of file offered in the Direct Connect network.
Users share images, office files, source code and all kinds of text files. Surprisingly
high is the amount of files classified as Internet type. Internet types are mainly

Fig. 2. Collection of ‘other’ data (log scale)

Towards P2P Information Systems 85

files with extension .html and therefore web pages. Note that the hyperlink
structure of web pages often relies on location and context of a file and that
html files typically are part of a collection of files and location and context
eventually changes when sharing a file on a P2P network. Our study shows hat
Internet type files are offered within networks despite the fact that P2P is not
the right ‘habitat for this kind of file.

Note that the average file size differs for the file types. This is an indicator
that files, in particular audio and video files, are not disguised as other kinds
of files (zip, html, files) in our data set. Note furthermore that both audio and
video files can be shared as zip files. There are many zip files and zip files that
can carry any kind of content, but the number of files and the overall volume of
zip file does certainly not dominate the overall picture. Since we are interested
in the kind of content that is distributed not the content itself, we refrain from
analyzing the kind of content of the zip files.

One source for the abundance of files and file types apart from the audio and
video types might be the hub rules. Some hubs require a minimum share and
users might be tempted to declare any kind of collection of data as share to get
permission to connect to those hubs. This is still an open question and only the
measurement of traffic can determine whether files offered and actual sharing
traffic match.

Let us briefly discuss the findings. Our data shows that file sharing is not
about sharing audio and video types any more. All types of content are found in
a P2P network. This has implications on technology and business models. While
Internet service providers mainly have to be concerned with the total size of
pieces of contents due to the traffic these files generate, they still can keep their
view on file sharing systems as multi-media sharing. From an information system
point of view, the number of information objects and the variety of information
objects are of interest.

Measurement of P2P traffic becomes increasingly difficult due to the new
P2P protocols. Most important factor here is the use of non-standard, dy-
namically changing, arbitrary ports in protocols as, e.g., Bittorrent [20]. Ad-
ditionally, those systems often use package encryption nowadays which makes
simple payload measurements inapplicable. Thus, measuring the offerings in-
stead of the traffic is sensible when one is interested in content rather than
P2P network issues.

In the first part of the empirical study, we observe that data supports
Hypothesis 1. File sharing today is not all about audio or video sharing. This
leads to the next question, whether P2P is about file sharing at all. Despite
the fact that the media industry and most of the users associate P2P with file
sharing, there are a significant number of P2P applications apart from pure
file sharing. Examples include Freenet, Skype, FreeHaven, and Edutella [21].
These applications are about communication or about organizing content and
interaction. In the second part of the empirical study, we analyze communi-
cation and the correlation between content and communication within P2P
network.

86 M. Kolweyh and U. Lechner

6 Peers = Anonymous Users?

In this second part of the study, we try to detect social network structures
within P2P networks. Our guiding hypothesis is that social networks emerge
in P2P networks and that a strong social network eventually benefits the file
sharing and the P2P network. We motivate this research with the analogy of P2P
networks to virtual communities. As communication is a deeply rooted human
need, we expect that users are willing to communicate in P2P systems. Research
on Virtual Communities describes the social network of a community as the
reason for users to contribute to the community, to be altruistic and to comply
with rules of a community [5]. We expect that a commitment of users, i.e., tough
hub rules correlates with the strength of a social network, i.e., communication
between users provided that the topic is legal and users are not forced into
strict anonymity. We also expect that hubs with topics are more likely to have
interaction and social networks than hubs without such a topic.

As in the first part of the study, the focus lies on the hubs and the interaction
on a hub. As described earlier, a peer connects to a hub to search for data and
file lists of other peers simultaneously connected to the hub. Peers can connect
to a hub only if they meet certain hub rules and/or confirm to data-filtering
entrance rules. Those hub rules include the minimum amount of shared data
(min share) and the minimum of open upload slots (the amount of bandwidth
a user sacrifices for download of contents offered by the peer). From a protocol
view, all hubs can have a hub description like, e.g., ‘romantic music here’. Those
topics describe what content is being shared on a hub. Users that are interested
in a particular topic select hubs accordingly.

We refer to hubs with a certain description and corresponding data-filtering
entrance rules as topic given hubs and to all others as ‘free-form hubs’.

Let us describe how we measure the communication on a hub. The Direct
Connect Protocol discriminates between query messages for files and normal
P2P communication (chat). Such messages are of the form

$To: <othernick>
From: <nick> $<<sendernick>> ;<message> (chat message)

$Search <ip>:<port> <searchstring> (search message)

Another form is

$To: <<sendernick>> <message> (public message)

which sends a public message to the hub board. Such messages can be seen by
all connected peers via a central hub message screen, depending on the imple-
mentation of the particular Direct Connect client.

It is important to notice that are are several popular Direct Connect hub
servers beside the official Neo-Modus hub server. While they are all implement-
ing the standard Direct Connect protocol there are also protocol extensions and
differences in the communication with a client. For instance, some hub servers

Towards P2P Information Systems 87

will not tolerate flooding messages and immediately kick users while other rely
on hub administrators to kick flooding peers.

Because we are mainly interested in communication between the peers and
interpret file requests as a special form of communication, we measure both
public and private message commandos, file requests and file transfers as message
units. We use the term message unit here according to its meaning as a unit of
measure for charging telephone calls, based on parameters such as the length
of the call. Depending on the particular server instance we are not always able
to measure private messages or download requests on the hubs. In the case of
download requests, we can always scan the number of requests to our particular
client and compare that with similar hubs and make a projection for the total
number of transfer requests. For messages we take the always available public
messages as the basis to approximate all private messages when we are not able
to scan them directly. We call a message msg unit now the average sum of all
chat, search and file request messages, that we measure on a hub in one second.

Besides the mentioned ’topic given’-parameter we test for a minimum share
size and the minimum number of peers connected to the hub. While min users
is mainly serving as a test attribute to control how messaging units raise with
the user amount we are interested whether the minimum share size has an effect
on the communication.

The results of the data collections are presented in Fig. 3. We measure the
message units and the attributes min share, the minimum amount of shared
data on a hub, topic-given, if there is a topic given for a hub and min users,
the minimum number of users connected to a hub. While min share (0, 10, 100
Gigabyte) and min users (1, 10, 50 peers) can take three values, topic-given (yes,
no) is a binary attribute. This produces 3 ∗ 3 ∗ 2 = 18 possible hub rule sets.

The result of the relation minimum share (min share) vs. topic given in the left
table of Fig. 3. Message divergence (msg divergence) indicates how the message
units diverge when the number of users is changed in the setup. There is a
tendency that with a smaller number of users and for smaller shares there is
relatively more communication going on. Also the percentage of communication

min share vs. topic given
min topic min msg msg
users given share units divergence

1 yes 0 0,011 0,004
10 yes 0 0,005 -0,002
50 yes 0 0,004 -0,003
1 no 0 0,003 0,000
10 no 0 0,002 -0,001
50 no 0 0,003 0,000
1 yes 10 0,040 0,013
10 yes 10 0,025 -0,002
50 yes 10 0,016 -0,011
1 no 10 0,017 -0,002
10 no 10 0,019 0,000
50 no 10 0,021 0,002
1 yes 100 0,559 0,029
10 yes 100 0,452 -0,078
50 yes 100 0,578 0,048
1 no 100 0,431 0,001
10 no 100 0,430 0,000
50 no 100 0,430 0,000

msg units vs. topic given
min topic min msg msg
users given share units ratio

1 yes 0 0,011 3,67
1 no 0 0,003
1 yes 10 0,040 2,35
1 no 10 0,017
1 yes 100 0,559 1,30
1 no 100 0,431
10 yes 0 0,005 2,50
10 no 0 0,002
10 yes 10 0,025 1,32
10 no 10 0,019
10 yes 100 0,452 1,05
10 no 100 0,430
50 yes 0 0,004 1,33
50 no 0 0,003
50 yes 10 0,016 0,76
50 no 10 0,021
50 yes 100 0,578 1,34
50 no 100 0,430

min users vs. topic given
min topic min msg msg
users given share units increase

1 no 0 0,003
1 no 10 0,017 5,67
1 no 100 0,431 25,35
1 yes 0 0,011
1 yes 10 0,040 3,64
1 yes 100 0,559 13,98
10 no 0 0,002
10 no 10 0,019 9,50
10 no 100 0,430 22,63
10 yes 0 0,005
10 yes 10 0,025 5,00
10 yes 100 0,452 18,08
50 no 0 0,003
50 no 10 0,021 7,00
50 no 100 0,430 20,48
50 yes 0 0,004
50 yes 10 0,016 4,00
50 yes 100 0,578 36,13

Fig. 3. Message unit measurements

88 M. Kolweyh and U. Lechner

messages increases with the share size and is higher for the topic-given hubs in
comparison to the free form hubs. This supports hypothesis 2.

The middle table provides the msg ratio, i.e. the ratio between topic-given
and free-form hubs. Topic-given hubs have more communication messages than
free form hubs and the ratio between topic-given hubs and free-form hubs on
communication messages is higher for hubs with a smaller number of users and
a smaller size. I.e. interaction on hubs with less users and less minimum share
seems to be more about communication whereas the big hubs with lots of content
and lots of users are more about sharing and less about communication. Again,
this validates hypothesis 2 that P2P is not about file sharing alone. Moreover,
this is an indicator that there are hubs that exist because of interaction, since
users could as well chose larger hubs with more content (and less interaction).

In the third table at the right of Fig. 3, we observe the influence of the min
share parameter on the message units. The larger the minimum share, the more
communication takes place. There is a tendency that this applies more to free-
form hubs. So the free form hubs seems to communicate about files and in the
topic given there seems to be other reasons for communication and the minimum
share that is a metric of how many files are available within the network does
not increase the messages in the same way as this happens in free-form hubs.

Let us briefly discuss our findings. The most obvious correlation is between
the number of users and the generated message traffic on the hubs; more users
simply generate more traffic. We observe a non-linear increase of msg increase
in the “min users vs. msg units”-part of Fig. 3. We do not find a correlation
between the minimum share size and the communication traffic. Finally, our
study shows a significant correlation between a given topic and the generated
traffic. This is depicted also in Fig. 4. There is a significant difference of the gen-
erated traffic when in comes to the topic-given-parameter with a quite constant
differential ratio. In 8 out of the compared 9 different rule pairs, the generated
communication traffic is higher on the topic-given hubs. Figure 4 illustrates this
in a log-scale diagram. On topic-specific hubs users seem to be more interested

Fig. 4. Message units on topic-given and free-form hubs (topic-given no)

Towards P2P Information Systems 89

in interacting with other peers than on anonymous hubs. This validates our
hypotheses as users are willing to connect to hubs with certain topics.

This validates our hypothesis - P2P is not all about file sharing users are
willing to interact and therefore are not totally anonymous, as the myth tells.

7 Conclusions

The paper analyzes the state of the art in the area of P2P applications and
the current use of P2P systems. The empirical research was done within a well
established P2P network, the Direct Connect network. We conclude from the
empirical research that P2P networks are about sharing all kinds of data – not
only audio or video types. This opens a chance for new designs of P2P systems as
general purpose information systems. We also observe that users do more than
just file-sharing they are willing to interact and a focus on a topic in a network
or on a hub fosters communication. More research needs to be done to validate
the impact of those interactions in a P2P network. Both our hypotheses could be
validated and this demystifies P2P. With the evolution of formerly huge, chaotic
anonymous music-sharing networks to distributed systems with various types of
content and P2P communities we expect next-generation P2P applications to
provide an opportunity for powerful information systems.

Acknowledgments

We would like to thank Achim Dannecker for stimulating discussions and the
anonymous reviewers for valuable comments.

References

1. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer to peer computing. Technical Report 57, HP Labs (2002)

2. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Computing Journal 6 (2002)

3. Shneidman, J., Parkes, D.C.: Rationality and self-interest in peer to peer networks.
In: Proc. 2nd Int. Workshop on P2P Systems (IPTPS’03). (2003)

4. Adar, E., Huberman, B.: Freeriding on gnutella. Firstmonday 5 (2000)
www.firstmonday.org.

5. Lechner, U.: Peer to Peer beyond Filesharing. In Unger, H., Boehme, T., Mikler,
A., eds.: 2. Conference on Innovative Internet Computing Systems. Lecture Notes
in Computer Science 2346, Springer Verlag (2002) 153–162

6. MacInnes, I., Hwang, J.: Business models for peer to peer initiatives. In Gricar, J.,
Wigand, R., eds.: 16th Bled Electronic Commerce Conference. (2003) CD-Rom.

7. Kolweyh, M., Lechner, U.: Data Mining in Peer-to-Peer Systemen. In Engelien,
M., Meiner, K., eds.: Gemeinschaften in Neuen Medien (GeNeMe 2004). Josef Eul
Verlag (2004) 103–114

90 M. Kolweyh and U. Lechner

8. B. Cohen: Incentives build robustness in BitTorrent. In: Proceedings of the First
Workshop on the Economics of P2P Systems. Berkeley (2003)

9. Schoder, D., Fischbach, K.: Peer-to-peer prospects. Communications of the ACM
46 (2003) 27–29

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proceedings of ACM SIGCOMM 2001. (2001)

12. Unger, H., Unger, H., Titova, N.: Structuring of decentralized computer commu-
nities. In: High Performance Computing 2002 (HPC 2002), San Diego, CA, USA
(2002) 245–250

13. Dingledine, R., Freedman, M. J., Molnar, D.: The free haven project: Distributed
anonymous storage service. In: Workshop on Design Issues in Anonymity and
Unobservability. (2000) 67–95

14. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)

15. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In: ICSI Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA (2000)

16. Piotrowski, K., Langendrfer, P., Kulikowski, D.: Moneta: An anonymity providing
lightweight payment system for mobile devices. In Grimm, R., N J., eds.: Virtual
Goods (2004). TU Illmenau (2004)

17. Unger, H., Böhme, T.: A probabilistic money system for the use in p2p network
communities. In: Virtual Goods (2003), Ilmenau, Germany (2003) 60–69

18. Clement, M., Nerjes, G., Runte, M.: Bedeutung von P2P Technologien fr die
Distribution von Medienprodukten im Internet. In Schoder, D., Fischbach, K.,
Teichmann, R., eds.: P2P. Ökonomische, technische und juristische Perspektiven.
Springer Verlag (2002) 71–80

19. NeoModus: Direct connect (2004)
20. COLLAB. NET: Project jxta (2004) Access Nov 2004.
21. Nejdl, W., Wolf, B., Staab, S., Tane, J.: Edutella: Searching and annotating re-

sources within an RDF-based P2P network. In: Proc. Semantic Web Workshop,
at the 11th Iternational World Wide Web Conference (WWW2002). (2002)

A Random Walk Topology Management
Solution for Grid

Cyril Rabat, Alain Bui, and Olivier Flauzac

Université de Reims Champagne-Ardenne,
BP 1039, F-51687 Reims Cedex 2, France

{cyril.rabat, olivier.flauzac, alain.bui}@univ-reims.fr

Abstract. GRID computing is a more and more attractive approach.
Its aim is to gather and to share the resources of a network like the con-
tent, the storage or CPU cycles. A computational distributed system like
SETI@home produces a power up to 70 TFlops whereas the current best
parallel supercomputer BlueGene produces a power of 140 TFlops. Such
a supercomputer costs very much contrary to a system like SETI@home.
But the use of many computers to increase the global computational
power involves several communication problems. We must maintain the
GRID communication in order to make any type of computation even
though the network is volatile.

In this paper, we present a model to represent GRID applications and
networks in order to show faults impacts. We present a fully distributed
solution based on a random walk to manage the topology of the GRID.
No virtual structure needs to be maintained and this solution works on
asynchronous networks. We also present some simulations of our solution.

1 Introduction

GRID computing is used to manage resources sharing and to gather resources
over a network. We can distinguish two kinds of GRID:

– High Performance GRID Computing (HPGC) is composed by few supercom-
puters gathered in a cluster. During a computation, we cannot disconnect
any computer. When a fault occurs, the computation stops and we must
restart it. But this kind of GRID has two main advantages: all the results
are true and we do not need topology management.

– Desktop GRID is composed of many nodes. Connections and disconnections
from the GRID can be numerous. Often, no authentication is used on nodes
and results can be wrong or corrupted. So even if no failure occurs on the
network, we must check all the results. There is no fixed architecture and we
need to manage the GRID topology.

In this paper, we present a new GRID topology management. This solution is
based on a random walk and is tolerant to nodes disconnections. To describe
it, we introduce an original network and application model for GRID. We use
several layers to distinguish communication graph, routing protocol, messages
exchanges and GRID application.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 91–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 C. Rabat, A. Bui, and O. Flauzac

In the next section, we present an overview of current GRID application types
and particularly we focus on their architectures. Then we present our 5-layer
model with a description for each one. Finally we show our random walk based
solution with fault management and in the last section, we discuss on some
simulations using this solution.

2 Related Works

2.1 An Overview of Current GRID Applications Architectures

For several years, as claimed in [12], GRID computing has been the unavoid-
able solution for resources sharing: computation power, data, storage and ap-
plications. Demands for these kinds of resources grow exponentially but, on
the other hand, many resources are unused. GRID computing enables us to
federate them. Many solutions have been designed. We can gather them in
three main categories:

– Applications designed to solve specific problems. In this category, we find
the first version of the SETI@home project1 developed to Search for Extra
Terrestrial Intelligence ([3]).

– Protocols and libraries providing tools to develop GRID applications like
JXTA ([14]).

– Middlewares offering a set of different services like resources discovery and
monitoring, topology management. . . We find the following solutions: Xtrem-
Web ([6]), Globus ([1, 11]), Diet ([5]), CONFIIT([10, 13]) or BOINC ([2]).

Whatever the category, several problems occur and particularly with the
topology management. In order to provide a QoS over the GRID, to gather
with its management and integration of new resources, it is necessary to define
a strategy depending on the chosen centralization degree. Based on this crite-
rion, we can classify the topology management of GRID applications into three
categories: centralized, distributed and hybrid (semi-distributed).

Centralized Topology Management. This is based on pure client-server model:
there is only one server on which all clients are connected. Submitters send
requests to the server that distributes it to clients. Results are collected and
returned to the submitter.

SETI@home ([3, 2]) for example, uses this kind of management: the data to be
analyzed are centralized on the Berkeley server. Based on free cooperation, users
download a client application that automatically contacts the server and down-
loads computation parameters. Results are collected by the server and saved
into a large database. Links between clients and server are not critical: connec-
tions and disconnections are numerous (up to 4 million volatile clients) and each
task is computed several times (2 to 3). The first reason is to avoid computational

1 http://setiathome.ssl.berkeley.edu/

A Random Walk Topology Management Solution for Grid 93

errors or malicious computation with comparison between results and the second
one is to manage clients’ failures.

This kind of management involves the overload of servers and a critical access:
if the server crashes, the GRID fails to work.

Hybrid Topology Management. This kind of management establishes a hierar-
chy between nodes. Several interconnected layers of servers are substituted for
the server. Nodes are managed by the lowest server and offer resources: storage,
data, applications or/and computational power.

DIET [5] uses this architecture: it is composed of several interconnected
servers called master agents (MA) in order to limit breakdown effects. If one
of them does not respond, clients can contact another one. Under MAs, we have
several layers of agents and at the bottom, the leader agents (LA) communi-
cate directly to nodes. MAs are used to federate the GRID and to receive and
diffuse requests to lower agents. LAs have a local knowledge of their associated
resources. Upon job submission, the submitter contacts an MA that diffuses its
request to intermediate agents and so on, down to nodes. If one of them suits
this request, it reports its local agent and the response goes up to the MA and
then to the submitter.

With this management, we decrease the overload of servers and we increase
the breakdown tolerance. But it is difficult to establish a good hierarchy that
has to suit the network topology as much as possible. Moreover, it overloads
special management nodes and the breakdown of one of them involves GRID
disconnection of the lower agents and their associated resources.

Distributed Topology Management. For this management, no hierarchy between
nodes of the GRID is needed. There is no server: each node has the same purpose
and is called a servent. It provides client and server tasks: computation, local
resources management and communication.

For example, we find the fully distributed middleware CONFIIT ([10, 13]).
Each node is set up into a virtual ring. When a neighbor crashes, nodes contact
their next neighbors and so on. A token maintains the ring topology and another
one manages the computation.

Although it is fully distributed, a ring structure is needed and it must always
be maintained. This management uses too much computational power. Further-
more, a fixed structure like a ring or a tree involves default paths. They are more
sensitive to breakdowns and each breakdown has more impacts.

2.2 Random Walk

A random walk is defined by a sequence of vertices visited by a token that starts
at node i and visits other vertices according to the following rule: when the
token is at node i at time t, at time t + 1, it is on one of the neighbors of i.
This neighbor is chosen uniformly at random among all of them and probability
to reach one of the neighbors is exactly 1/deg(i), where deg(i) is the number of
neighbors. In [15], the author shows us a survey on random walks.

94 C. Rabat, A. Bui, and O. Flauzac

A random walk has some quantities to evaluate its efficiency:

– the cover time C is the average time to visit all nodes of the graph.
– the hitting time denoted by hi,j is the average time to reach a node j for the

first time starting from a given node i.
– the return time is the average time for a random walk to return to its original

node. It is the special hitting time hi,i.

Each quantity has a lower and upper bound as proved by U. Feige in [7, 8].
Random walks are used in several cases. In [9], the author gives an algorithm

to compute routing tables of the shortest paths. But we can also find GRID
applications. In [4], the authors show a method to distribute the tasks of a
problem into a computational GRID in bounded time and in [16], an algorithm
based on multiple random walks enables us to decrease the number of messages
when querying in peer-to-peer networks.

3 Preliminaries

3.1 Model

To adapt our random solution to a network, we need to model GRID applications
as represented on figure 1 and described below. The model is composed of five

firewall

path

LEGEND

LEGEND

active node

inactive node

link

link

LEGEND

2

’’)

RT = {local routing table}

bidirectonnal
physical linkda

ta
L

oc
al

da
ta

L
oc

al

NG =(V, E)

unidirectional

bidirectional

unidirectional

physical link

path

Management
Resources
sharing

Tasks Others

3

0
1

Neigh = {0, 1, 3}2

Neigh = {2, 4}3

Neigh = {0, 3}

Reach = {reachable nodes}

V’ = active nodes

LAYER 4 : GRID TOPOLOGY

(n1, n2) in E’’ if (n1, n2) in E’}

LAYER 5 : GRID APPLICATION

’G

E’’ = {For all (n1, n2) in V’ ,

G =(V’,E

i

G = (V, E’)R

G
ra

ph
G

ra
ph

LAYER 1 : NETWORK

LAYER 2 : ROUTING

V={nodes of the network}
E={undirected physical links}

LAYER 3 : MESSAGE

E’ = {directed authorized paths}

i

Neigh = {neighbors of node i}i

Neigh = {1, 2, 4}

Acknowledgment

Neigh = {0, 2}

4

Send/Receive messages

Reach = {2, 3, 4}
Reach = {0, 2, 3, 4}

Reach = {0, 1, 3, 4}

Reach = {0, 1, 2, 3}

Reach = {0, 1, 2, 4}

0

1

2

4

3

4

3

2

4

0

10

1

2

3

4

0 1

2

Fig. 1. On the left, figure shows layers of our model and on the right, a network and
its representation through each layers

A Random Walk Topology Management Solution for Grid 95

layers. The first one is a representation of a network and, in each layer, we have
special mechanisms and protocols like a routing protocol, messages passing. . . At
the top, layers are assigned to GRID management and its applications.

Layer 1: Network. A network is modeled by a graph GN = (V, E), where V is the
set of nodes and E the set of edges. Each node represents a computer (we can use
computers, processors or resources indifferently) of the network and each edge
represents a physical link: ∀n1, n2 ∈ V 2, (n1, n2) ∈ E if n1 and n2 are connected
physically. Each node is associated with an unique identifier and communicates
with its neighborhood by passing messages through communication links. We
consider the network to be asynchronous. Each node owns a set Neighi which
contains its neighborhood and is automatically maintained.

Layer 2: Routing. In this layer, a routing protocol computes local routing table
in each node. For example, in [9], the author shows how to build them with a
random walk. But we can use classical algorithms like distance vectors or link
states. We define the sets as called Reachi ; they contains all the network nodes
that node i can reach. Reichi are automatically maintained. So, we build a new
graph GR from these sets. With restricted access rights by firewall, for example,
GR has directed links and if there are few firewalls, we can suppose that this
graph is dense. We obtain GR = (V, E′) with E′ = {n1, n2 ∈ V 2, (n1, n2) ∈ E′ if
a path exists from n1 to n2}.

Layer 3: Communications. A communication protocol works on GT in order
to exchange messages between nodes that have a route between them. This
protocol supplies functions send and receive with errors and acknowledgments
management: if a message is not transmitted to the destination node, the sender
of the message is informed. This layer also ensures the correctness of received
data and corruptions can be detected. The network is asynchronous, but we
suppose we have an upper bound on communication delay.

Layer 4: GRID Topology. In this layer, we distinguish two node states. When a
node enters the GRID its state is called active. Conversely, a node of the net-
work that does not collaborate with the GRID is called inactive. Within layer
3, this node keeps relaying messages. We construct a graph GG = (V ′, E′′) with
V ′ = {n ∈ V/n is active}. V \V ′ is the inactive nodes set. The set of links of GG

is E′′ = {∀n1, n2 ∈ V ′2, (n1, n2) ∈ E′′ if (n1, n2) ∈ E}. We have the following
properties: ∀n1, n2 ∈ V ′2, ∃ path between n1 and n2 and GG ⊆ GR. The Reachi

sets contain active and inactive neighbors of nodes.

Layer 5: GRID Application. Applications that work on the GRID must add sev-
eral kinds of management: task management, resources sharing. . . In this paper,
we focus on computational GRID. So we only describe tasks management that
has to distribute tasks into the GRID and to collect results.

We use the solution introduced by CONFIIT. Each task of a problem is tagged
by a state: uncomputed, computed or in progress. Each node owns an array that

96 C. Rabat, A. Bui, and O. Flauzac

contains the whole set of tasks with its state. A random walk circulates into the
GRID containing a copy of the sender local array. It updates local arrays of each
GRID node. When a node wants to compute a task, it chooses at random one
of uncomputed tasks in its local array and tags it with the in progress state. At
the end of the computation, the task is tagged computed and the node chooses
another one. When all tasks are computed, the problem is finished.

In order to avoid uncomputed tasks and to accelerate the global computation,
when a node has not any uncomputed task, it chooses randomly one of the in
progress tasks. For example, we can have a node that chooses a task and crashes
before terminating it. This task is considered as a replicated task.

3.2 Fault Impacts

In each layer of our model, we can have internal faults or impacted ones from
lower layers.

Layer 1. We can only have definitive breakdowns in this layer: a node can fall
down or a link can be disconnected. If a link (i, j) ∈ E is disconnected, nodes i
and j update their neighborhood. A node crash is a disconnection of all its links:
∀j ∈ Neighi, Neighj ← Neighj\{i}.

Layer 2–3. When a fault is impacted from layer 1, the routing protocol has to
compute new paths. If it succeeds, local routing tables are updated and higher
layers do not detect any fault. Otherwise, we can have path loss and some nodes
can still be unreachable. They are supposed to be disconnected.

Layer 4. This layer ensures the GRID topology management. If some nodes are
disconnected, there are deleted from the GRID. We also have to manage deacti-
vation of GRID nodes. If one of them wants to go out of the GRID (voluntarily

L
A

Y
E

R
 4

PATH LOSS NODE(S) UNREACHABLE

Update GRID topology

TOKEN LOSS

NODE(S) GRID
DISCONNECTION

faults

actions

can envolves

LEGEND

Compute new path(s)
if it’s necessary

NODE DISCONNECTIONLINK DISCONNECTION

NODE(S) DISCONNECTION

Update Neighborhood(s)

L
A

Y
E

R
 1

L
A

Y
E

R
 2

−
3

Fig. 2. Impacts of faults through layers of our model

A Random Walk Topology Management Solution for Grid 97

or not), the protocol has to update the topology. In the same way, if we use a
token for the protocol, it can be lost when a node crashes. So we need a recovery
mechanism.

Notice that when a node crashes, the task that it is computing is deleted. It
must be computed by another node.

Figure 2 shows the fault management scheme.

4 Topology Management with a Random Walk

4.1 Introduction

The GRID topology (layer 4) is updated by a token. The state of the GRID is
an adjacency matrix. Each node i owns a local matrix Mi defined by:

∀i, j ∈ V ′2, Mi(i, j) =
{

1 if j ∈ Reachi

0 if j /∈ Reachi

The topology token contains a copy of the sender matrix MT . It is used to
update the local matrices of other nodes.

To manage tasks (layer 5), we use the solution introduced in the CONFIIT
middleware described in section 3.1. We need a token containing a state tasks
array AT which is a copy of the local array of the sender node. State tasks are
updated in each node.

The two tokens circulate at random in the GRID. We choose to merge them
into a single token to reduce the number of messages.

4.2 Algorithm

When a node receives the token (MT , AT), it updates its local matrix and its
local array. When it is finished, the token is sent with Mi and Ai. To update the
local matrix, we can distinguish the following cases:

– ∃n ∈ MT /n /∈ Mi: a new node n has integrated the GRID. n must be inserted
into matrix Mi. We use the Add function which adds a new row and a new
column and updates neighbors.

– ∃n ∈ Mi/n /∈ MT : the token does not contain node n. Only node i knows
this node. It is a new one and its entry point is node i.

– ∃n ∈ MT and n ∈ Mi: we update neighbors for node n into Mi with the
Update function.

Statei(t) represents the state of a task t in the array of node i. It values
either uncomputed (0), or in progress (1) or computed (2). The function called
UpdateTasks update the local array Ai by keeping the better task progression
to update each task state. Algorithm 1 shows the reception of a token (MT , AT)
by a node.

98 C. Rabat, A. Bui, and O. Flauzac

Algorithm 1. Token reception from a node j in node i
1: // Add new nodes and update Mi

2: for all node nT ∈ MT do
3: if nT ∈ Mi then
4: Update Mi

5: else
6: Add nT into Mi

7: end if
8: end for
9: UpdateTasks
10: // Send the token
11: Send TOKEN to a random neighbor with MT ← Mi and AT ← Ai

4.3 Connection to the GRID

When a node wants to enter the GRID, it has to contact one of the GRID nodes
called an entry point. We need a bidirectional link between the new node and the
entry point. The new node sends a connection request message which contains
its neighborhood. The entry point answers by sending its adjacency matrix and
its local tasks states array. In case of success, the two nodes update their local
matrix. The new node is integrated into the GRID and can compute a task.
With its local knowledge, it becomes a possible entry point. The entry point
also has to verify if there are only two nodes in the GRID. In this case, it has
to create the GRID token and to send it to the new node.

4.4 Fault Management

On layer 4, we have to solve faults impacted from lower levels of our model. As
we have shown in section 3.2, we need to manage nodes and links disconnection.
A node detects it with the automatic updating of its set Reach by layer 2. We
also have to manage the deactivation of a node and the token loss.

Link or Node Disconnection. When a node detects a neighbor disconnection, it
cannot know if it is a link or a node disconnection. So, it only updates its adja-
cency matrix. With the latter, the node can build a spanning tree rooted on it. If
it detects that some nodes are not included in this tree, these nodes are unreach-
able and can be deleted from the matrix: they are considered as inactive nodes.

GRID Node Deactivation. A GRID deactivation can be voluntary if a user wants
to stop its collaboration. In this case, it can send messages to its neighbors to
inform them about it. But if the application suddenly crashes, it cannot send any
messages. It becomes an inactive node but its disconnection is not yet detected
by its neighbors: it is still in the network and neighborhoods, but it cannot re-
sponse to GRID messages. When one of its neighbors receives the token and tries
to send it, an error occurs. So this neighbor can update its local matrix. To ease
the management and to avoid any message creation, we do not distinguish these
two cases. For a voluntary disconnection, nodes have not to send any messages.

Token Recovery. According to layer 3, the data into the token can not be cor-
rupted. In the same way, the token can not be lost: when a node sends a message,

A Random Walk Topology Management Solution for Grid 99

it has an acknowledgment. But when a node crashes after reception of the token
and before sending it to one of its neighbors, the token is lost. So each node
owns a timeout Ti that allows the regeneration of a token when it ends. In this
case, node i updates its local matrix with its neighborhood knowledge: Mi only
contains its neighbors. For each one, the node tests its reachability in order to
delete inactive ones. Then, the node chooses a random neighbor and sends the
token. The initial value of the timeout depends on the GRID size. If the value
is too low, many tokens will be created and, on the other hand, if the value is
too high, a token loss induces a reaction time before regeneration.

After the crashing of a node or link, it is possible for the GRID to contain
more than one token: the timeout ends before its incoming of the token. We
have to add a new mechanism to delete additional ones. In [13], the authors
chose to mark the token with a sequence number seq and the identity of node id
that creates it. Each node keeps a memory of the sequence and identity of the
latest token. When a node enters the GRID, its sequence number and id equal
0. When a node generates a new one, it increases this sequence number. Then
at reception of a token with sequence newSeq and identity newId, we have the
three following cases to consider:

– seq > newSeq: the token is an old one so it can be destroyed.
– seq < newSeq: the token is more recent than the latest one, so seq and id

can be updated.
– seq = newSeq: it is a normal case according to the value of id and newId:

• id = newId: normal case.
• id < newId: the token is more recent than the latest one, so seq and id

can be updated.
• id > newId: token is an old one so it can be destroyed.

4.5 Full Algorithm

When a node receives the token, it has to test the reachability of its neighbors.
For each one, it uses the function reachable(n), that returns true if node n is
still reachable: n ∈ Reachi and n ∈ GG. It can update its local matrix. Then,
from the matrix, it can build the spanning tree rooted on it in order to discover
detached nodes and to delete them. Algorithm 2 shows the full process to remove
all the unreachable nodes of the GRID.

Algorithm 2. Removing unreachable nodes
1: // Delete inactive nodes
2: for all node ni ∈ Mi do
3: if ni /∈ MT then
4: if reachable(nT) == false then
5: Delete ni into Mi

6: end if
7: end if
8: end for
9: // Search unreachable nodes
10: Ti = tree rooted in i
11: Delete all nodes n ∈ Mi / n /∈ Ti

100 C. Rabat, A. Bui, and O. Flauzac

In algorithm 3, we describe the behavior of a node which receives the token.
First, we have to test the validity of the token according to its sequence. Then,
the node updates its local matrix. When it has to add a new node included in
its neighborhood, it must test if this node is already active.

Algorithm 3. TOKEN reception from node j at node i
1: if sequence of TOKEN is not valid then
2: Destroy TOKEN
3: else
4: // Add new nodes and update Mi

5: for all node nT ∈ MT do
6: if ∃nT ∈ Mi then
7: Update Mi

8: else
9: if nT ∈ Reachi then
10: if reachable(nT) == true then
11: Add nT into Mi

12: end if
13: else
14: Add nT into Mi

15: end if
16: end if
17: end for
18: Removing unreachable nodes
19: Update tasks array
20: // Send the token
21: Send TOKEN to a random neighbor with MT ← Mi and AT ← Ai

22: end if

5 Simulations

We have developed a C++ program to perform simulations based on random
walk solution. We use the decomposition of a Langford problem in irregular and
independent 1366 tasks. Length tasks are given thanks to a computation on
the CONFIIT middleware. Thus we obtain very irregular lengths (2,000 ms to
18,432 ms). A sequential computation takes Ts = 14, 913, 112 ms.

We launch simulations on several random networks so as to obtain an average
time to finish the whole computation Tt and an average number of the replicated
tasks. In order to compare the distributed solution with the sequential one, we
compute an efficiency factor e that depends on the size of the network (n is the
number of nodes) and is given by the following formula:

e =
Tt ∗ n

Ts

If a network contains n nodes, an optimal distributed solution must spend n
less time to finish computation and has an efficiency factor equal to 1.

We launch a number of simulations on random networks with 10 to 100 nodes.
For each series, we fix the network and we obtain the results on figure 3.

In order to show the breakdowns tolerance, we add voluntary and regular node
disconnections during a fixed length. After a breakdown, the node wakes up and
sends a connection request to one of its neighbors. We launch the simulations on

A Random Walk Topology Management Solution for Grid 101

Fig. 3. Efficiency factor in function of network size

Fig. 4. Impacts of periodic breakdowns

a fixed random network with 100 nodes. We increase the frequency of breakdown
and we obtain the results on figure 4.

The more the network grows, the longer the time to cover the graph. It induces
a reaction time to inform other nodes and increases the likelihood of a node
choosing the same task as an other node. It produces more replicated tasks
and the efficiency factor decreases. For these simulations, we have 1366 tasks to
compute for 100 nodes: only 14 per node.

As far as breakdowns are concerned, we notice a number of replicated tasks
triggered by the tasks management. A node starts a task. It receives the token
that informs the other nodes that the task is in progress. If this node crashes, the
task is tagged as in progress but it cannot be computed. With a larger number of

102 C. Rabat, A. Bui, and O. Flauzac

breakdowns, after a given time, local task arrays contain only in progress tasks.
When a GRID node selects one of them, it supposes that it is a replicated one
but in fact, this task is computed for the first time.

6 Optimizing Token Content

For an adaption to a large network, we have to consider a number of nodes.
The size of the matrix becomes too large and overloads the network. We can
reduce local matrix Mi and token matrix MT by keeping only the useful data:
the directed spanning tree. To build it, we introduce the predecessor notion:
when node i receives the token from node j, j becomes its predecessor. The tree
is represented in node i as an array Gi which contains the predecessor of each
GRID node. When a node crashes, we allow only its predecessor to delete it
from the GRID. For example, figure 5 shows a GRID with a node crash. Node 3
receives the token and detects that node 4 is disconnected. We build a spanning
tree from array G3. It shows that node 3 is the predecessor of node 4, so it can
destroy it and its subtree from the GRID nodes set.

This solution reduces local data and length of the token but some problems
occur. If the token produces a cycle, we can not build a spanning tree.

corresponding tree1 2

34

5

node crashed

token

1 2 3 4 5G =3 32 4 1 4

23 1 4 5
nodes to delete

Fig. 5. Example of a node crash with predecessor solution

7 Conclusion

We show that the topology management using a random walk is an efficient
solution as shown by simulations. It allows many topological changes without
GRID falls and without the management of a virtual structure. But we notice
that the growth of the network implies a decreasing efficiency. The size of the
token and data into each node must be reduced to keep a good performance
level. Some solutions can be presented. For a larger network, we are planning to
use multiple random walks and clusterings in order to reduce replicated tasks
by increasing the update of local task arrays.

Acknowledgments

This work was partly supported by “Romeo”2, the high performance computing
center of the University of Reims Champagne-Ardenne, the “Centre
2 http://www.univ-reims.fr/Calculateur

A Random Walk Topology Management Solution for Grid 103

Informatique National de l’Enseignement Superieur”3 (CINES), France and by
the project ACI GRID-ARGE funded by the French ministry of research.

References

1. W. Allcock, A. Chervenak, I. Foster, L. Pearlman, V. Welch, and M. Wilde. Globus
toolkit support for distributed data-intensive science. In I. Press, editor, Computing
in High Energy Physics (CHEP’01), September 2001.

2. D. P. Anderson. BOINC: A System for Public-Resource Computing and Storage.
In GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), pages 4–10, Washington, DC, USA, 2004. IEEE Computer
Society.

3. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: an experiment in public-resource computing. Communications of
the ACM, 45(11):56–61, November 2002.

4. A. Bui, M. Bui, and D. Sohier. Randomly Distributed Tasks in Bounded Time. In
T. Böhme, G. Heyer, and H. Unger, editors, IICS, volume 2877 of Lecture Notes
in Computer Science, pages 36–47. Springer-Verlag, December 2003.

5. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. A
Scalable Approach to Network Enabled Servers. In B. Monien and R. Feldmann,
editors, Proceedings of the 8th International EuroPar Conference, volume 2400 of
Lecture Notes in Computer Science, pages 907–910, Paderborn, Germany, August
2002. Springer-Verlag.

6. G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: A Generic Global
Computing System. In IEEE/ACM - CCGRID’2001 Special Session Global Com-
puting on Personal Devices. IEEE Press, May 2001.

7. U. Feige. A tight lower bound on the cover time for random walks on graphs.
Random Structures & Algorithms, 6(4):433–438, 1995.

8. U. Feige. A tight upper bound on the cover time for random walks on graphs.
Random Structures & Algorithms, 6(1):51–54, 1995.

9. O. Flauzac. Random Circulating Word Information Management for Tree Con-
struction and a Shortest Path Routing Tables Computation. In R. G. Cardenas,
editor, OPODIS, Studia Informatica Universalis, pages 17–32. Suger, Saint-Denis,
rue Catulienne, France, 2001.

10. O. Flauzac, M. Krajecki, and J. Fugère. CONFIIT : a middleware for peer to peer
computing. In C. T. M. Gravilova and P. L’Ecuyer, editors, The 2003 International
Conference on Computational Science and its Applications (ICCSA 2003), volume
2669 (III) of Lecture Notes in Computer Science, pages 69–78, Montréal, Québec,
June 2003. Springer-Verlag.

11. I. Foster and C. Kesselman. Globus : a metacomputing infrastructure toolkit. In
I. Press, editor, Supercomputer Applications, volume 11 (2), pages 115–128, 1997.

12. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure. MORGAN-KAUFMANN, September 1999.

13. M. Krajecki, O. Flauzac, and P.-P. Mérel. Focus on the communication scheme
in the middleware confiit using xml-rpc. In 18th International Workshop on Java
for Parallel Distributed Computing (IW-JPDC’04), volume 6, page 160b, Santa Fe,
New Mexico, April 2004. IEEE Computer Society.

3 http://www.cines.fr

104 C. Rabat, A. Bui, and O. Flauzac

14. S. Li. JXTA 2: A high-performance, massively scalable p2p network. Technical
report, IBM developerWorks, November 2003.

15. L. Lovász. Random walks on graphs : A Survey. In T. S. ed., D. Miklos, and
V. T. Sos, editors, Combinatorics: Paul Erdos is Eighty, volume 2, pages 353–398.
Janos Bolyai Mathematical Society, 1993.

16. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In ICS ’02: Proceedings of the 16th international
conference on Supercomputing, pages 84–95. ACM Press, 2002.

Content-Oriented Self-organization in
Unstructured P2P Data Sharing Systems.

An Approach to Improve Resource Discovery

German Sakaryan and Herwig Unger

Computer Science Dept., University of Rostock,
18051 Rostock, Germany

{gs137, hunger}@informatik.uni-rostock.de

Abstract. The flooding-based search is a major problem in unstruc-
tured peer-to-peer file sharing systems like Gnutella or KaZaa since it
results in a significant portion of Internet traffic. This article intended
to demonstrate that flooding can be avoided by using a content-oriented
self-organization mechanism. In contrast to connections that are usually
made randomly between peers in unstructured systems, each peer set
up its connections based on content interests represented by offered and
downloaded files. Through the simulation, it was shown that these lo-
cal activities resulted in a global content-related network topology even
under highly dynamic conditions. It was demonstrated that the content-
oriented topology could be used to organize focused search in order to
avoid flooding.

1 Introduction

Peer-to-peer (P2P) file sharing systems like Gnutella or KaZaa are large scale
distributed networks built at the application level. These systems utilize the re-
sources of end-user machines (bandwidth, computer power, and storage capacity)
for file sharing. Accordingly, these applications can survive without employing
expensive server infrastructure since the costs of file sharing are distributed
among a large number of individual hosts. These networks suffer from high net-
work dynamics caused by a transient peer population. To be part of a network,
each peer keeps a certain number of connections with a set of other peers typi-
cally called neighbors. These connections are mostly formed randomly; thus, the
respective networks are unstructured. If some connections die, a peer sets up
new connections using pre–cached addresses of other peers. In order to main-
tain a cache of addresses, peers use a network discovery ping-pong protocol [1]
that returns addresses of available peers within a certain radius. Therefore, the
most available powerful peers with good bandwidth are the most frequently pre–
cached. This simple behavior results in topology self-organization. The resulting
topology exhibits strong small-world properties represented by small graph di-
ameter, a high clustering coefficient and various power-law relationships [2, 3].

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 105–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 G. Sakaryan and H. Unger

Because of self-organization, P2P networks demonstrate self-maintenance, self-
repairing and adaptation properties [4]. Accordingly, they cope with dynamics
and deliver high fault tolerance.

Since the connections between peers are mainly made randomly, the resulting
network topology is not related to data placement. Accordingly, unstructured
applications use mainly flooding-based search [1] to locate files when a user
query is propagated among network peers. As a result, P2P applications are the
main source of Internet traffic [5], which causes a major problem.

In contrast to unstructured Gnutella-like systems, the systems like CAN [6],
Chord [7], Pastry [8] etc. are based on the Distributed Hash Tables (DHT)
paradigm. Every file in these systems is associated with a key which is produced
by hashing the name or content of the file. The range of the output values of the
hashing function forms an ID space. Every peer is responsible for the part of the
ID space by storing files (or the information about files) with respective keys.
DHTs are highly structured with well defined content-related overlay topologies
(e.g., grids, rings, etc.). Peers are linked to each other depending on the parts
of the ID space, for which peers are responsible. In order to achieve a scalable
search with small search traffic, fixed structures are required for correctness of
operations. Therefore, DHTs are considered less reliable in the face of transient
peer populations.

This paper shows that network flooding can be avoided due to content-
oriented self-organization. At the same time, the good properties of unstructured
systems can be preserved. For this purpose, a new content-oriented approach to
the organization of unstructured systems was discussed. Each peer arranged its
connections in accordance with its content interests represented by locally offered
or downloaded files. Through simulations, it was proved that a content-oriented
network topology emerged even under highly dynamic conditions. It was demon-
strated that the resulting network organization had a positive influence on the
search operations. The respective focused search algorithm is discussed.

The remainder of this article is organized as follows. Section 2 discusses the
concepts of content-oriented self-organization and search. Section 3 describes the
simulation environment. The simulation results are discussed in Section 4. This
section is followed by a conclusion.

2 Network Organization and Search

2.1 Content-Oriented Self-organization

The users of P2P systems have common interests in file sharing. They form
a virtual community where the relations between users can be defined based
on files which are shared and/or searched. In social communities, such joint
interests lead to self-organization. People self-organize in groups depending on
their particular interests (e.g., group of people which are interested in the songs
of a “XYZ” artist). Such an organization has a positive influence on information
searches. In this case, the rule “I know somebody who has the same interests

Content-Oriented Self-organization 107

as I do” might decrease the search time and improve the quality of the search
results.

In the current unstructured P2P file sharing networks, this self-organization
effect is ignored because the connections between peers are mostly formed ran-
domly. Accordingly, the P2P topology is unrelated to content interests of the
respective users and cannot be effectively used for the search.

To bring the structure of the user community onto the network level, the
connections between peers should be made according to user interests. Each
peer set up its connections in accordance with following strategies:

– Social. Neighbors offered content most similar to the content offered locally.
It was called social restructuring (SR).

– Egoistic. Neighbors offered content most similar to the content a user was
interested in (downloaded files) (ER).

– Intergroup. Neighbors offered content least similar to the content offered
locally (IR).

In order to support content-oriented organization, the content of peers was
indexed (see Section 3.2). The respective index (description) of a peers’ content
can be transfered across a network; it is also used to determine whether different
peers offer similar content or not.

For network discovery, a special search message structure was developed. In
addition to traditional parameters like TTL (Time To Live), a message has
contained a Log, which included the addresses of visited peers and a description
of their content. In this way, additional messages for the network discovery were
avoided. The discovered information was cached locally by peers and was used
to set up appropriate outgoing P2P connections in accordance with a chosen
strategy.

2.2 Content-Oriented Message Forwarding

To organize an informed search, each peer stored content descriptions of its neigh-
bors. A forwarding algorithm consulted these descriptions every time a search
message has been forwarded. To make decisions, the forwarding algorithm dy-
namically created a routing table for each of the search queries. A routing table
included a list of peers locally known. Every table’s record also contained a cal-
culated similarity of the respective peer’s content description to the user query.
The peer for the next hop was randomly chosen from the peers that had equiv-
alent highest similarity to a query. In this way, a query was always forwarded as
closely as possible to the peers offering content similar to the content a query
was looking for. To increase efficiency of the search, messages were not forwarded
to the peers which had already been visited. The TTL was used to limit the life
time of the message and prevent extra, useless network loads. If a TTL has
reached zero, the message would be directly sent to its starting peer where it
was analyzed and sent into the network again. If the required data was found, a
message would be directly sent back to the starting peer informing it about the
address of the found peer.

108 G. Sakaryan and H. Unger

3 Simulation Setup

The presented approach was extensively evaluated. Network dynamics and con-
tent description and distribution, as well as modeling of the user queries (pop-
ularity of files and frequencies – how often a user places a query) play a very
important role for the realistic evaluation of a content-oriented approach. At the
same time, the effect of heterogeneous peer capabilities (bandwidth and com-
puter power)was eliminated for simplicity.

3.1 Network Dynamics

It was shown [9, 10, 11], that P2P systems have transient peer populations. Only
a small part of peers is available for a long time, while the majority of peers tend
to be available only for short times.

To model the availability of a peer, two main states were distinguished: on-
line state (peer is available) and off-line state. An on-line peer was active and
could communicate with other peers. Accordingly, the peer performed all net-
work operations (e.g., data search). An off-line peer was unavailable.

The on-line peers formed a P2P network and off-line peers formed a pool of can-
didates. In this article, the dynamics of the peer population were limited only to
transitions from on-line state to off-line (from P2P network to pool) and vice versa.
After joining a P2P network, a peer stayed connected until a certain time had ex-
pired and then disconnected. An off-line peer behaved also in the same way.

To model peers’ availability, two parameters were used for each peer. The first
one was the length of the continuous time interval a peer stayed on-line, the so-
called “on-line time”. The second parameter described the time interval a peer
stayed off-line. These two parameters formed a time profile, which characterized
a peer’s user.

Empirical studies demonstrate that the on-line time of peers can be modeled
by an exponential distribution with the assumption that only a limited number
of peers (3–5%) is available during the entire observation time [9]. The respective
on-line time was obtained for each peer in the network by mapping randomly
generated values in the range of [0–100] to the corresponding time by using the
exponential distribution [12] below:

y = 100 · e(−k·t) (1)

where y-is a probability that the peer has the respective on-line time t.
In order to have dynamics during the simulations similar to the those dis-

covered in [9], it was assumed that ye = 5% was the probability to have an
on-line time bigger than the time of simulation. Accordingly, the constant k was
calculated by using the following formula:

k =
ln(100

ye
)

te
(2)

where te was total time of simulation.

Content-Oriented Self-organization 109

The size of real networks oscillates with 24-hour and 7-day periods [10, 13],
which is caused by users’ locality. Since these fluctuations are not so big in com-
parison with average network size, they were not considered in the presented
model.

According to many estimations, the size of real P2P networks is estimated
to be less than 10% [14] of a total number of potential peers (on- and off-
line). Modeling this ratio is prohibitively expensive for simulation purposes, e.g.,
having 2,000 peers on-line requires simulating at least 20,000 peers. Therefore,
it was assumed that the size of the on-line network is at the level of 50% of total
number of simulated peers. To achieve this level, the exponential distribution
laws used to generate on-line and off-line time are set to be equal.

3.2 Modeling Shared Content

For network organization and search purposes, the content should have a uni-
fied representation across a network, which includes a unified representation
of offered files, a unified representation of peers’ content (peer’s content sum-
mary/descriptions), unified representation of a search query and a unified rep-
resentation of users’ interests (summary of the downloaded files). In addition, it
is necessary to have the possibility to measure similarity between different files,
peers and so on.

For simplicity, each file was represented in vector form, where each dimen-
sion was associated with a distinct term (e.g., keyword). The weight of a term
reflected the importance of this term for this file. The collection of shared files
formed a peer’s content. For convenience, similar files were grouped in cate-
gories. A category was represented in the same vector form as files. The set
of categories, with numbers of the respective files stored in the each of them,
formed the content summary of the peer.

The search query and summary of the users’ interests were described in the
same way, i.e., by using vectors to represent search queries and a set of categories
with the number of files to represent downloaded content.

The similarity between files, categories, queries and files were measured gen-
erally as a cosine of the angle between corresponding vectors [15]. The similarity
between a query and a particular peer was the largest similarity between a query
and all categories kept on the peer. The similarity of a peer nj to a peer ni con-
sidered not only presence of similar categories but also the absolute number of
documents kept in them. To do so, the similarity was measured as a size of the
intersection vector (which includes common categories for both ni and nj) di-
vided by the size of ni. The weight for a common category in an intersection
vector was chosen as a minimum of the weights of that category on peers ni and
nj respectively. The developed approach helped to compare not only the content
of the peers but also to consider the size of the peer from a number of offered
files perspective.

The important terms and their weights used to describe files can be obtained
in different ways. If a P2P application is devoted to text documents sharing, a
term can be a keyword used in the document body and the weight can represent

110 G. Sakaryan and H. Unger

its frequency/importance. If content of the file cannot be analyzed (e.g., mp3)
than terms are simply keywords used in the name of the file.

The content plays an important role in influencing the operations of P2P file
sharing networks. Files are usually replicated. The shared content replication
can be approximated by Zipf’s law [10]. The most popular 10% of files account
for about 50% of the total number of stored files. An average replication rate
is 1.3717 [16]. Because the size of the simulated network was not so big, it
was assumed that files were not replicated in order to test the worst case. In
addition, the pessimistic assumption that only 2% of peers offered similar content
(similarity bigger than zero) was used.

3.3 Simulating User Request Structure

The two aspects of the user request structure, which influence network opera-
tions, were modeled for the simulation purpose:

– Popularity of requested files. Results obtained from the analysis of the file
transfer statistics in Gnutella [10] and KaZaa networks [17] show the strong
correspondence between a particular file and its popularity among users. The
file popularity is significantly skewed. A limited number of files are requested
very often (65% of downloads go to the 20% most popular files for KaZaa
network), while most of files are requested rarely. This skewness in user
requests influences the query flow in the network, which may lead to traffic
concentration around peers which store popular items.

– User query frequency, i.e., how often a user requests files. This important
characteristic influences the traffic in the network.

The skewness in file popularity among users does not exactly follow Zipf’s power
law distribution in contrast, for example, to Web statistics [18]. In spite of this
fact, the usual power-law distribution can be used for simulation purposes. Since
the files have different popularities in real networks, one might expect that a peer
storing popular content suffers from a significantly bigger load. This problem is
partly solved by file replication, where the most replicated files are mainly the most
popular among users. Therefore, such replication improves load balancing.

It was assumed (see Section 3.2) that files were not replicated. In this way,
the usage of the power-law distribution to model file popularity among users
would result in a very limited number of permanently overloaded peers, which
will negatively influence the operations of the simulated network. Accordingly,
such bad simulation conditions would be unrealistic. Therefore, to improve simu-
lation conditions, it was assumed that the popularity distribution is linear. This
resulted in less skewed peer loads. On the other hand, the content popularity
still influenced the message flow.

To model the popularity of the documents among users and to simplify simu-
lations, all documents in the simulated network were split into 4 groups of equal
size. Documents of group A were requested 40% of the time, while documents of
group B were requested 30% of the time, C-20%, and D-10% accordingly. Even

Content-Oriented Self-organization 111

though the most popular 25% of documents were requested 40% of the time in
contrast to 20%–65% (for KaZaa network), the peers storing the most popular
content were expected to receive more requests due to lack of replication than
in real networks.

For simulation purposes, each peer was assigned a summary of users’ queries.
Each summary consisted of descriptions of the documents to be requested during
a simulation.

During a simulation run, it was assumed that the summary of the user’s
queries was not changing. To create this summary, each document (its descrip-
tion) was randomly selected from the set of documents available in the network
taking different popularity into consideration.

The search request was generated in two cases:

– A peer joined a network. When a peer entered an on-line state, it generated
a query by random selection of the document description from the assigned
summary of user’s queries.

– The previous query successfully proceeded. To test the worst conditions, a
peer generated a new query only after a previous query had successfully
proceeded, i.e., a required file was found.

These simple rules corresponded to a measurement study done for KaZaa
network [18]. It was discovered that the biggest query activity is generated by
newcomers which have joined a network recently. It was also shown, the longer
P2P clients stay on-line, the less they demand from the system. In our case,
peers will generate less queries with time since some part of queries will not be
satisfied (e.g., discarded queries).

3.4 Network Settings and Algorithms

The previous results [19], obtained in networks with static membership, demon-
strated that the best system performance was achieved when a peer had both
social and egoistic-type neighbors (SER- was used). Accordingly, the SER was
chosen for the experiments under dynamic conditions.

To get reliable results, the size of the network must be large enough. On the
other hand, simulating large networks becomes a problem since simulation time
rapidly increases with growth of a network. Considering both arguments, the size
of a network was 2048. In this way, 10 neighborhood entries were equally divided
between egoistic and social parts. The results presented below were obtained for
a network with 2048 peers (the size of the neighborhood 10). Similar results
were demonstrated in networks with 1024, 4098, and 8196 peers; the size of the
neighborhoods was 10 and 20 accordingly.

The initial network was generated as a random graph where about 50% of
all simulated peers were on-line. The peers’ arrival and departure were modeled
by using the approach presented in Section 3.1. At the initial moment, each of
the on-line peers had no more than 4 neighbors, but on average two of them were
on-line. Therefore, average in-degree (calculated only for the graph organized
by on-line peers) was less than 2.

112 G. Sakaryan and H. Unger

3.5 Description of the Simulation

The network simulation was done during the simulation run. The simulation run
is divided into equal intervals called steps. During each of the steps, network op-
erations were monitored and statistics were collected. The statistical data from
different simulation steps was used to evaluate and to analyze changes made by
the developed algorithms and to investigate their influence on the system oper-
ations. The number of simulation steps was typically 100. As it will be shown,
the majority of changes were done within the first 20 simulation steps. By the
end of one step, statistical data was collected and all messages, which were still
in the network, were discarded. This was done in order to avoid “phantom mes-
sages” from the previous simulation step because the significant part of statistics
was message-related (e.g., the number of hops made). The next simulation step
started with the topology achieved during the last step.

A simulation step consisted of simulation cycles. Each cycle was a control
loop, which was used to achieve pseudo-parallelism of peers’ operations. During
a cycle, peers sequentially received control. While having a control, a peer could
change its status (on-, off-line), generate queries, handle incoming messages,
restruct its neighborhood, etc.

All activities performed by all peers within a cycle were assumed to have been
made simultaneously. Therefore, all messages, which had been sent during a cy-
cle, were accumulated in a message spooler. By the end of a cycle (when all of the
peers had already received controls), messages were delivered from the spooler
to receivers. Thus, every message could make only one hop during a cycle. To
make a simulation step long enough for statistics collection, the number of such
cycles within one simulation step must be related to the network size. For sim-
plification, the number of cycles in each step was chosen equal to the number of
peers in a network. For example, the size of a network is 4,000 peers, so each peer
receives a control 4,000 times within one simulation step. On the other hand,
a query, which had been generated at the beginning of a step, had at least a
theoretical possibility of visiting all peers in a network to find required data.

4 Discussion on Simulation Results

The goals of the evaluation of the developed approach were to determine whether
it could avoid flooding and whether the local activities could result in global self-
organization under dynamic conditions.

Based on search traffic represented by the number of hops needed to find
data, the proposed approach can be positioned between flooding-based and
structured applications. It delivered significantly lower average number of search
hops (about 20) than Gnutella-like flooding-based systems (Fig. 1) even if op-
timistic assumptions for Gnutella (TTL=3, 4 connections) were used. In com-
parison with highly structured systems, e.g., CAN, the content-oriented
approach demonstrated bigger numbers of hops and, therefore, higher search
traffic. The respective theoretical estimations for CAN were made with an as-
sumption of n=2048, and d=5 (where d- is a number of dimensions corresponding

Content-Oriented Self-organization 113

0 10 20 30 40 50 60 70 80 90 100
Step

0

10

20

30

40

50

60

70

80

90

100
H

op
s

SER+CF polyn. regress. (degree 10) maxdev 7.449
Gnutella (TTL=3, Connections=4)
CAN d=5, n=2048

Fig. 1. Average Number of Hops per Successful Query

to the 10 neighbors). In this case, the average number of hops was estimated by

using dn
1
d

4 .
The positive effects were caused by content-oriented organization. The obser-

vations demonstrated that social neighbors were mainly used for forwarding. It
means that queries were forwarded within groups sharing similar content. The
egoistic neighbors were mainly used at the initial stage to reach those groups.

The obtained results demonstrated that local activities led to the global or-
ganization. In spite of dynamics, the network stabilized. The number of changes
caused by organization activities reached a stable level within the first 5 simu-
lation steps (Fig. 2). The observed self-organization was fast enough to adapt
to the network dynamics. Each peer had on average 9.5 (max. number is 10)
outgoing connections during the simulation.

The important issue of all P2P protocols is their scalability, i.e., changes
of their behavior with network growth. The proposed approach was also tested
under different network sizes in order to determine whether the data can be found
within a reasonable number of hops. The respective results are represented in
Table 1.

It is seen that in the chosen simulation conditions, the developed approach
demonstrated almost linear scalability. In this way, the average number of hops
needed to find a requested file is proportional to the size of the network. The
observed effect corresponds to the worst case behavior; it is mainly caused by
bad simulation conditions. It was assumed that:

114 G. Sakaryan and H. Unger

0 10 20 30 40 50 60 70 80 90 100
Step

0

1000

2000

3000

4000

5000

6000

7000

8000
#C

ha
ng

es

SER+CF

Fig. 2. Topological Changes Caused by Content-oriented Restructuring

Table 1. Average Number of Hops Per Successful Query vs. Size of the Network

Size of a Network, peers
Max Number of Neighbors 1,024 2,048 4,096 8,196

10 9.18677 20.4708 41.8841 91.4992
20 4.8982 7.46469 14.6508 34.3842

– Peers may ask for the data which is not available on-line. Since a query
is forwarded until data is found or until query is discarded, it negatively
influences the system performance.

– Data is not replicated. A search query visits more peers to find required
data than would be required to in real systems where the popular data is
significantly replicated.

– Each query is represented only by one search message. If a message is dis-
carded (in congestion or due to an on-line - off-line transition), a query is lost.

– If a message is discarded in congestion, a sender is not informed since
connection-oriented protocol is not used.

– A peer- search initiator does not use a time-out to resend a query. The peer
will keep waiting and generates a new query only when it joins the network
next time.

In addition, simulations used unidirectional connections between peers. In real
systems, messages can be sent in both directions during communication (using

Content-Oriented Self-organization 115

TCP protocol). Thus, the system performance can be improved once more by
utilizing bidirectional connections.

The presented results demonstrated that flooding in file sharing networks
can be avoided by using content-oriented self-organization and search. It was
demonstrated that a network self-organizes under highly dynamic conditions by
executing simple local algorithms. In contrast to DHTs, a tightly controlled net-
work structure was not required for the correctness of operations that positively
influenced the reliability of the system.

5 Conclusion

The operation of unstructured P2P applications can be significantly improved
by employing content-oriented self-organization. The search mechanism can use
content-related network topology to achieve focused search in order to avoid
network flooding. At the same time, the good properties of unstructured systems
can be preserved. The discussed principles can also be used to organize operations
of other types of P2P applications like communication or service sharing systems
that accept partial search.

References

1. Gnutella: The Gnutella protocol specification v0.4. http://www.limeware.com
(2003)

2. Jovanovi, M., Annexstein, F., Berman, K.: Modeling peer-to-peer network topolo-
gies through small-world models and power laws. In: IX Telecommunications Forum
TELFOR 2001, Belgrade, Yugoslavia (2001)

3. Ripeanu, M., Foster, I.: Mapping the Gnutella network: Macroscopic properties
of large-scale peer-to-peer systems. In: Peer-to-Peer Systems, First International
Workshop, IPTPS 2002, Revised Papers. Volume 2429 of Lecture Notes in Com-
puter Science., Cambridge, MA, USA, Springer-Verlag, Berlin (2002) 85–93

4. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,
B., Rollins, S., Xu, Z.: Peer-to-Peer Computing. Technical Report HPL-
2002-57, HP Laboratory Paolo Alto (2002) Available: http://www.hpl.hp.com/
techreports/2002/.

5. Internet2: Weekly reports. http://netflow.internet2.edu/weekly/ (2003)
6. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content

addressable network. In: Proceedings of ACM SIGCOMM 2001. (2001)
7. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-

able Peer-To-Peer lookup service for internet applications. In: Proceedings of ACM
SIGCOMM 2001. (2001) 149–160

8. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). (2001) 329–350

9. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: Proceedings of Multimedia Computing and Networking
2002 (MMCN ’02), San Jose, CA, USA (2002)

116 G. Sakaryan and H. Unger

10. Chu, J., Labonte, K., Levine, B.: Availability and locality measurements of peer-to-
peer file systems. In: SPIE ITCom: Scalability and Traffic Control in IP Networks.
Volume 4868. (2002)

11. Vaucher, J., Babin, G., Kropf, P., Jouve, T.: Experimenting with gnutella com-
munities. In: Distributed Communities on the Web (DCW 2002). Volume 2468
of Lecture Notes in Computer Science., Sydney, Australia, Springer Berlin (2002)
85–99

12. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter P2P networks.
In: 42th IEEE Symp. on Foundations of Computer Science, Las Vegas, USA (2001)
56–64

13. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Proceed-
ings of the second ACM SIGCOMM Workshop on Internet measurment workshop,
ACM Press (2002) 137–150

14. Clip2: Gnutella measurement project. http://www.clip2.com (2001)
15. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing

Documents and Images. second edn. Morgan Kaufmann, San Francisco (1999)
16. Makosiej, P., Sakaryan, G., Unger, H.: Measurement study of shared content and

user request structure in peer-to-peer Gnutella network. In: Design, Analysis, and
Simulation of Distributed Systems (DASD 2004), Arlington, USA (2004) 115–124

17. Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the Kazaa network. In:
3rd IEEE Workshop on Internet Applications (WIAPP’03), San Jose, CA (2003)
112–119

18. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan,
J.: Measurement, modeling, and analysis of a peer-to-peer file-sharing workload.
In: 19th ACM Symposium on Operating Systems Principles (SOSP-19), Bolton
Landing, NY, USA (2003)

19. Sakaryan, G., Unger, H., Lechner, U.: About the value of virtual communities in
P2P networks. In: 4th IEEE International Symposium and School on Advanced
Distributed Systems (ISSADS 2004). Volume 3061/2004 of Lecture Notes in Com-
puter Science., Guadalajara, Mexico, Springer (2004) 170–185

Improving Reliability of Distributed Storage

Ricardo Marceĺın-Jiménez�

E.E. Dept., UAMI; Atlixco 186; 09340 México D.F.
calu@xanum.uam.mx

Abstract. A storage scheme is a distributed system that coordinates a
set of network-attached components. Using this type of solution it is pos-
sible to achieve balance in time and space over the involved components.
Although this approach was developed to support efficient global states
recording, many storage applications, like web hosting or distributed
databases, might profit from it to provide highly available and reliable
services. We explore the impact of space and information redundancy in
order to improve the integrity requirements of files stored according to
this management principles.

1 Introduction

In its simplest form, distributed storage consists of spreading a collection of files
across the components of a network. Of course, each application has special re-
quirements. For a long term operation, the active components of a distributed
storage system have a non-zero probability of crash failures. In an event of this
type, information retrieving might be compromised unless some preventive ac-
tions are taken.

In a storage scheme, proper subsets of network-attached components are ap-
pointed to work as storage repositories. The size and composition of these subsets
achieves a balanced solution where each component participates as many times
as any other and none works as a full-time storage. Also, depending on the in-
tersections between these subsets, a given scheme may resist more or less crash
failures, i.e. the absence of a component may affect more or less subsets.

1.1 Related Work

Distributed storage is becoming a key procedure as long as telecomunications
and computer systems depend on it not only to support the increasing number
of services but also, to keep up with the inner operations of these very systems.
Yianilos [Yianilos 2001] provides a sample of the many trends of this emerg-
ing technology. Marceĺın and Rajsbaum [Marceĺın & Rajsbaum 2003] introduced
the idea of storage scheme as a distributed coordination procedure achieving bal-
ance in time and space, over the involved components. Marceĺın [Marceĺın 2005],

� (Visiting the E.E. Dept. of the CINVESTAV under contract Marina-CONACyT
2002C013199A).

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 117–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

118 R. Marceĺın-Jiménez

evaluated the initial solutions in terms of reliability and time to failure. Stor-
age schema are related to the so-called Redundant Arrays of Distributed Disks
(RADD) [Mourad et al. 1996]. Nevertheless, storage schema are not a special
purpose hardware, but rather provide logistics to manage storage devices al-
ready available.

Up to now, storage systems have addressed the information integrity issue
using erasure codes [Bhagwan et al. 1999]. Rabin [Rabin 1989] provides a way
to tolerate failures by dispersing each data item into several bit sequences of a
smaller size. This method is more demanding on communication, because recon-
structing information means multiple remote accesses. On the other hand, it has
advantages in supporting backup copy storage.

1.2 Contributions

Given a storage scheme known to have a superior fault-tolerance, we wanted
to improve its lifetime. For this purpose, we have tested the effect of incor-
porating information redundancy in combination with different forms of space
redundancy: starting from a simple base case called kv1d, we have evaluated the
impact of spare components with and without replacement, as well as two-folded
and three-folded mirror systems, called kv2d and kv3d, respectively.

We assume that failure rates are i.i.d. following exponential distribution. This
hypothesis allows us to use phase type distribution to model system behavior.
We achieve analytic expressions for failure time distribution and mean time to
failure.

The rest of this paper includes the following parts: Section 2 introduces the
concept of storage scheme, describes the particular storage scheme which is the
departing point of this work, as well as the different types of redundancy that
will complement this original system. In section 3 we present the analytic tools
that will help us to model the degradation process of the systems under study.
Section 4 presents and comments on the results of the experiments we designed.
Section 5 includes the concluding remarks as well as the recommendations for
further work.

2 Variations on the Same Scheme

A storage scheme is a distributed coordination system that runs a set V of
network components and evolves through steps. Every component is in charge
of one disk of its own. At each step, a file F to be recorded is cut up and all of
its corresponding fragments will be stored in a proper subset of the components,
called a block. A sequence of blocks B1, B2, . . . , Bb of the same size is appointed
to play the role just described, during succesive steps. Blocks are rescheduled in
a fixed order at the end of a cycle.

The storage scheme of this work is based on a very simple collection of blocks
which has turned out to be the most resilient to failures: We say that a “k
out of v” scheme, or kv for short, is a storage scheme that runs on a set V of

Improving Reliability of Distributed Storage 119

V={ c , c , c }

B 1 1 0

B 0 1 1

B 1 0 1

0 1 2

0

1

2

B=

c0

c1 c2

B0 B2

B1

Fig. 1. A storage scheme B from a given V

v components and coordinates as blocks all of the subsets of size k, from V .
Figure 1 shows an example of kv scheme, with parameters v = 3 and k = 2.
In [Marceĺın & Rajsbaum 2003], we introduced 4 different storage schema, in-
cluding kv. In [Marceĺın 2005] we evaluated their performance in terms of a
reliability measure called, mean time to failure (mttf). Also, we showed that kv
is the most reliable storage scheme to coordinate a given set of v components.

For any storage scheme, components are assumed to have a unique number
i ∈ (0, v − 1). During the execution, each component risks a crash failure. We
assume that once it stops working, it is never restarted and it is considered
permanently out of service [Deswarte 1991]. If a site in Bj crashes, all of the
data stored in the block is useless, because the corresponding files cannot be
reconstructed. A storage scheme is considered to be destroyed, when each of its
blocks has at least one missing component.

Any system threatened of malfunctioning may incorporate some form of re-
dundancy on their components or subsystems: Space redundancy implies the
replication of physical components. Spare components and mirror systems are
two examples of this approach. In time redundancy, a given operation is repeated
in order to improve its probability of completion. Timed retransmissions used
on link protocols, use this techique. Finally, information redundancy requires
some coding techniques to detect and, if possible, correct a given error-bit. See
error-correcting codes, like Hamming or Reed-Solomon, for instance.

In many storage scenarios, there is a file to be stored in a hard disk belonging
to a network component. So, if this component has a stop failure, the information
retrieval will be cancelled. The most frequent solution for this problem consists
of storing a backup copy in a second component. The main drawback of this
solution is that the alternate component reduces its effective available space in
order to locate a file that might never be read from it. Besides, if the first and
the second component fail, the file will be lost.

We propose an alternative approach based on the so-called “IDA: Information
Dispersal Algorithm” developed by Rabin [Rabin 1989]. Let F be a file, F could
be transformed into k files called dispersals. Each of size |F |/m, where k >
m > 1. Then, the dispersals are stored in the k components that built up the
corresponding block of a given storage scheme. From the algorithm properties
it is granted that if any k − m dispersals were lost, the original information can
be reconstructed from the m surviving dispersals. In this case, the cost of the
reconstruction could be accepted due to the “amortized” storage shared among
the alternate components, and also due to the superior tolerance it exhibits.

120 R. Marceĺın-Jiménez

c
0

c
1

c
2

B
0

B
2

B
1

c
0

c
1

c
2

B
0

B
2

B
1

c
0

c
1

c
2

B
0

B
2

B
1

c
0

c
1

c
2

B
0

B
2

B
1

c’
0

c’
1

c’
2

B’
0

B’
2

B’
1

c’’
0

c’’
1

c’’
2

B’’
0

B’’
2

B’’
1

a. b. c.

d.

Fig. 2. Variations on a kv1d scheme

Information dispersal is a form of information redundancy. For the rest of this
paper, we will assume that any storage operation uses IDA. Therefore, any file
to be stored is transformed into k dispersals to be placed in a given block of the
underlying kv scheme.

Besides IDA, we explore some forms of space redundancy to evaluate its im-
pact on the reliability of kv schema. A one-dimensional storage scheme, kv1d, is
just a simple kv scheme, with parameters k and v, obviously. A two-dimensional
storage scheme, kv2d, is made up from two identical kv1d schema, working as
a mirror of each other. Finally, a three-dimensional storage scheme, kv3d, is
made up from three identical kv1d schema, working as a mirror of each other.
Our goal is to evaluate the risk of destruction in each of the following cases: i)
kv1d (fig. 2a), ii) kv1d having s spare components (kv1d+s), with and with-
out replacement (fig. 2b and c, respectively), iii) kvnd, for n = 2, 3 (fig. 2d,
for n=2).

3 Tools and Methods

Consider a storage scheme whose conditions can be represented by n+1 states
indexed by 0 . . . n. State 0 denotes a “like-new” state and state n a com-
plete system failure. Other states are ordered and indexed in increasing degree
of deterioration. The scheme’s deterioration process can be described using a
finite-state absorbing continuous-time Markov chain with a single absorbing
state. The time to absortion distribution of such a Markov chain has received
extensive attention in the literature of stochastic modeling and computational
probability. Such a distribution, called phase-type distribution, has many at-
tractive properties from modeling and computation perspectives [Kao 1997]
[Neuts 1981].

Let S = {0, 1, . . . , n} be a finite set of states. Now consider a Markov jump
process {Xt}t≥0 with state-space S = {0, 1, . . . , n} and with exactly one

Improving Reliability of Distributed Storage 121

absorbing state, say state n. Assume that all other states are transient. Then
the intensity matrix of the Markov process looks as follows:

Λ =
(

T t
0 0

)
,

where it is understood that 0 is a n-dimensional row vector of zeros, T a n × n
matrix and t is a n-dimensional column vector. Then we say that the restriction
of the Markov jump process to the set of states 0, 1, . . . , n − 1 is a terminating
Markov process, since eventually absortion will take place. Moreover, the time of
termination is called the life time of the terminating Markov process. A phase-
type distribution is the distribution of the life time of a terminating Markov
process.

We will assume that P (X0 = n) = 0. Hence it is sufficient to specify the initial
distribution of {Xt}t≥0 for states 0, 1, . . . , n−1. Let Π denote the n-dimensional
(row) vector such that πi = P (X0 = i),

∑n−1
i=0 πi = 1. We say that a distribution

is phase-type with generators Π and T has a representation PH(Π,T). In the
following we call T the intensity matrix of the phase-type distribution, and t
the exit (rate) vector.

We introduce the following notation for the terminating Markov process X̃t =
Xt|0,...,n. The distribution of the terminating Markov jump process {X̃t}t≥0 at
time t is ΠeTt. Let X ∼ PH(Π,T), if t is a random variable describing the time
to absortion of X , then

1. The distribution function F of t is given by F (t) = 1 − ΠeTte.
2. The density function f of t is given by f(t) = ΠeTtt.
3. The expected time to absortion E(t) is given by E(t) = Π[(−T)−1(−T)−1]t.

We note that R(t) = 1 − F (t), also called the survival probability, is the
probability that the terminating Markov process is alive at time t. While F (t)
is probability that the terminating Markov process is been absorbed at time t.

The phase-type distribution associated to the resulting Markov chain, fea-
tures the failure model of a storage scheme under study. The expected time to
absortion, from now on mean time to failure (mttf), measures the average time
it takes to hit each of the blocks that make up the corresponding scheme.

It is known that if an individual component, a disk for instance, has a failure
probability following an exponential distribution, with mttf λ1, then having v
replicas of the same component will reduce the mttf of the whole set to λ1

v , unless
some kind of redundancy is settled among these components in order to build
up an enduring system. For the rest of our work we assume that each individual
component has a mttf, λ1 = 1.

To explain the Markov chain featuring the degradation of a kv1d storage
scheme it is important to note that no matter how v − k + 1 components were
dismissed, there would not be a single block unaffected. Therefore, starting from
v available components the chain jumps to its next state with an agregated
failure rate equal to vλ1, for there are v different ways to eliminate any of the
original components. From then on, the transition rate is consecutively reduced

122 R. Marceĺın-Jiménez

5 4 3

7 6 5 4 3

7 6 5 4 3

1 1

a)

b)

c)

Fig. 3. kv1d Markov chains

5

5

4 3 2 1

4

10 10 10 10 10

3

2

1

3

3

3
3 3

5

5

5

5

5

4

4

4

4

4

3

3

3

2

2

1

1

5 5 5 5 5

4 4 4 4 4

3 3

2 2

1 1

Fig. 4. kv2d Markov chains

one unit each state, which means that number of remaining components is also
decreasing. The final state represents the moment when not even a single block
can be made up from the remaining k−1 survivors. Figure 3a) shows the Markov
chain associated to a kv1d scheme with parameters k = 3 and v = 5.

A kv1d scheme having s spare components has an associated Markov chain
similar to the one corresponding to a simple kv1d. The only difference is that
the starting failure rate is equal to (v+s)λ1. On the other hand, the destruction
conditions are exactly the same as in the first case, i.e. the final state represents
the moment when only k − 1 components survive. If we want to model the
replacement operation we must incorporate s jumps of speed λ2 to the initial
state. Starting from the second state on, this backwards transitions represents
an operation that restarts the system to its initial conditions. Figures 3b) and
c) show the Markov chains associated to the same kv1d scheme with parameters
s = 2 spare components and replacement speed λ2 = 1, respectively.

As for the kvnd (n = 2, 3) scheme, it is clear that any given scheme of this
type is alive as long as, at least, one of its kv1 subsystems stands in operation.
Therefore, it can resist the massive failure of all but one of its subsystems.
In other words, it could be possible to dismiss v components from any n − 1
subsystems, as long as there is at least one block functioning in the surviving
kv1d. Figure 4 shows the Markov chain associated to a kv2d scheme with basic
parameters k = 3 and v = 5.

4 Results

Table 1, obtained from a Markov chain like that of fig. 3a), shows the mttf as a
function of k and v for different cases of kv1d. If read by columns we will find
that mttf< 1.0 when k ≥ v/2. On the other hand, mttf> 1 when k is about equal
to

√
(v). Also, the lower the size of k, the higher the value of mttf. Nevertheless

a very small block size is not a good option: first, because in the limit the best
value would be k = 1, which is not a distributed solution at all. Second, because

Improving Reliability of Distributed Storage 123

Table 1. mttf of kv1d

kv1d v = 5 v = 7 v = 10 v = 15
k = 2 1.2833 - 1.9290 2.3182
k = 3 0.7833 1.0929 1.4290 1.8182
k = 4 0.4500 0.7595 1.0956 1.4849
k = 5 - 0.5095 0.8456 1.2349
k = 6 - 0.3095 - 1.0349
k = 7 - - - 0.8682

Table 2. mttf of kv1d+s

v = 5 k = 2 k = 3 k = 4
kv1d 1.2833 0.7833 0.4500

kv1d+s = 1 1.4500 0.9500 0.6167
+s = 2 1.5929 1.0929 0.7595
+s = 3 1.7179 1.2179 0.8845

Table 3. mttf of kv1d+s and r

v = 5, k = 3 s = 1 s = 2 s = 3
kv1d+s 0.9500 1.0929 1.2179

kv1d+s, r = 1 0.9833 1.1833 1.3833
+s, r = 2 1.0167 1.2833 1.5833
+s, r = 4 1.0833 1.5119 2.1012

it may produce a bottleneck. Therefore, k =
√

(v) seems to be a very good
trade-off on the block size.

Table 2, obtained from a Markov chain like that of fig. 3b), shows the impact
of the spare components on the mttf, for a fixed v = 5 and different combinations
of k and s. It can be shown that any kv1d scheme with parameters k and v and
s spare components has the same mttf value that a simple kv1d scheme with
parameters k and v + s.

Table 3, obtained from a Markov chain like that of fig. 3c), shows the impact
of the spare components (s) and the speed of replacement (r) on the mttf, for
fixed values of v = 5, k = 3 and different combinations of s and r. It is assumed
that the replacement time also follows an exponential law with a rate λ2 equal
to once, twice or four times the failure rate. It can be seen, as expected, that
r plays a key role on the system’s lifetime but (see the last value of the second
column and the first value of the last column) a reasonable number of spare
components may compensate a rather slow replacement.

Table 4, obtained from a Markov chain like that of fig. 4), shows for a fixed
value v = 5 and different values of k, the effect of mirroring a simple kv1d to
produce a kv2d and a kv3d under the same parameters. Also, we wanted to com-
pare the mttf of each of these n-folded schema against the corresponding mttf

124 R. Marceĺın-Jiménez

Table 4. kv1d’s mttf vs kv2d’s vs kv3d’s

v = 5 kv1d kv2d kv(2v)1d kv3d kv(3v)d
k = 2 1.2833 1.6512 1.9290 1.8695 2.3182
k = 3 0.7833 1.0321 1.4290 1.1814 1.8182
k = 4 0.4500 0.6194 1.0956 0.7243 1.4849

of a simple kv1d having nv storage components, that we will call k(2v)1d and
k(3v)1d, respectively. As expected, the mttf of kvnd is bigger than kv1d but,
surprisingly, lower than that of k(nv)1d (n = 1, 2). A major problem we had
when evaluating kvnd schema is that the state space grows with a rate O(vn).

5 Conclusions

We presented a specific family of distributed storage systems called storage
schema. Network storage components are organized in subsets of a fixed size,
called blocks. Blocks are properly scheduled to work as file repositories in order
to achieve balance in time and space. Also, the size and composition of these
blocks defines the tolerance resilience of the corresponding scheme.

We introduced different types of space and information redundancy that com-
plement a basic storage scheme already studied, called kv1d, and evaluate the
reliability parameters of the resulting combinations.

We have seen that, as long as possible, it is better to work with a simple kv1d
storage scheme with a block size equal to around

√
(v). It is also a good idea

to leave more or less spare components depending on the speed of replacement.
These rules of thumb seem to perform better when v grows. Nevertheless, what
we mean by “as long as possible” is that communication problems may appear
at some point. Scalability requires regionalization and mirroring may become a
feasible solution.

For future work we are planning to study storage situations arising in real-
life that might profit from the ideas presented here, i.e. P2P nets, web storage,
distributed databases and the like. Additionally, we believe that the stochastic
tools we have worked with, may help to model federated storage schema.

References

[Bhagwan et al. 1999] Bhagwan, R., Moore, D., Savage, S. and Voelker G.
2002. “Replication Strategies for Highly Available
Peer-to-Peer Storage” in International Workshop on
Future Directions in Distributed Computing.

[Berenbrink et al. 1999] Berenbrink, P. and Brinkmann, A. and Scheideler, C.
1999. “Design of the PRESTO Multimedia Storage
Network.” in International Workshop on Communica-
tion and Data Management in Large Networks. 2–12.

Improving Reliability of Distributed Storage 125

[Deswarte 1991] Deswarte, Y. 1991. “Tolérance aux Fautes, Sécurité
et Protection.” in Construction des Systèmes
d’exploitation Répartis, R. Balter, et. al. (eds.),
INRIA, chapter 9.

[Kao 1997] Kao, E.P.C. 1997. An Introduction to Stochastic Pro-
cesses. Duxbury Press.

[Marceĺın & Rajsbaum 2003] Marceĺın-Jiménez, R. and Rajsbaum, S. 2003. “Cyclic
Strategies for Balanced and Fault-tolerant Distributed
Storage.” LNCS 2847. 214–233.

[Marceĺın 2005] Marceĺın-Jiménez, R. 2005. “Performance Measures
for Distributed Storage.” in Proceedings of the De-
sign Analysis and Synthesis of Distributed Systems
Conf.(DASD2005). Society for Computer Simulation.
53–62.

[Mourad et al. 1996] Mourad, A.N., Fuchs, K.W. and Saab, D.G. 1996.
“Site Partitioning for Redundant Arrays of Dis-
tributed Disks.” Journal of Parallel and Distributed
Computing. 33. 1–11.

[Neuts 1981] Neuts, M.F. 1981. Matrix-Geometric Solutions in
Stochastic Models. The Johns Hopkins University
Press.

[Rabin 1989] Rabin, M. O. 1989. “Efficient Dispersal of Information
for Security, Load Balancing and Fault Tolerance.”
Journal of the ACM. 36(2). 335–348.

[Yianilos 2001] Yianilos, P. 2001. “The Evolving Field of Distributed
Storage.” IEEE Internet Computing. Sep/Oct. 35–39.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 126 – 133, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Lamport’s Logical Clocks to Consolidate Log Files
from Different Sources

Roberto Gómez, Jorge Herrerias, and Erika Mata

ITESM-CEM, Depto. Ciencias Computacionales, Km 3.5 Lago Guadalupe,
51296, Atizapan Zaragoza, Edo México, Mexico

{rogomez, jherrerias, emata}@itesm.mx

Abstract. Event logging and log files are playing an important role in system
and network security. Log files record computer system activities, are used to
provide requirements of reliability, security and accountability applications. In-
formation stored in log files can be obtained from different devices, not neces-
sarily clock synchronized, and they do not arrive in the same order they are
generated. Nevertheless, log information has to be coherent in time to be useful.
To support the events we propose to use Lamport’s logic clocks, originated at
different sources, in a causal relationship. As a result the administrator will
count all the events involved general idea in a computer incident. A model im-
plementation is also presented.

1 Introduction

Log files keep information used in computer forensics to find system crash causes or
to obtain evidence to define responsibilities. Accountability is an essential part, i.e. to
be capable of being held responsible for something.

Every operating system, application or network device writes the activity records
into one or multiple log files. The event logs implementation varies for different oper-
ating systems and applications; there is no industry standard for it. For example, on
UNIX systems, the majority events are written to the text file called a Syslog, as well
as the Windows systems maintain multiple binary files for multiple purposes: security
log, system log.

In [1] Lamport presents the logical clock concept. A logical clock is a chronologi-
cal capturing mechanism and causal relationships in a distributed system. As physical
clocks cannot be perfectly synchronized, event timestamps derived from readings of
physical clocks generally cannot be used to find out the ***order in which events
happened.

Some approaches have been proposed in order to correlate log information origi-
nated at different devices. Most solutions need that time synchronized devices, and
they propose to use NTP protocol. Nevertheless some of these devices reside in dif-
ferent time zones and NTP protocol is not a solution. In order to establish devices
events reported secuency we propose to “stamp” every log using Lamport’s logical
clocks. This stamped logs will be stored in a database in order to help the administra-
tion to have a general panorama of the events occurred in a specific time period.

 Using Lamport’s Logical Clocks to Consolidate Log Files from Different Sources 127

This paper is organized as follows. Section two describes the log management fea-
tures. Section three summarizes all Lamport’s logical clocks Theory. Section four
presents some related work and our proposal. Section five discusses the experiments
made to test our proposal. Section six draws some conclusions and shows future
work.

2 Logs Management Overview

As mentioned in [2] application programs and subsystems use log services for recov-
ery, to record security audit trails, and for performance monitoring. Preferably, a log
service should accommodate very large, long-lived logs, and provide efficient re-
trieval and low pace overhead.

Generally logging facilities are used in computer systems and applications to pro-
vide requirements of reliability, security and accountability. Computer systems use
logs to record or log, execution history to satisfy these requirements. Following a
failure, the application can use this history to recover a previous state. The history can
also be used to restore the current state of a system after the data structures for this
state have been reviewed, allowing the application to evolve without excessive dis-
ruption. This technique is often used to move between different file systems incompa-
bility versions.

The logs can be used in the security domain. System logged history can be exam-
ined to monitor for, and detect, unauthorized or suspicious activity patterns which
might represent security violations.

File logs can be found in several formats, divided in text and binary log files. Logs
come in different flavors, so we need several approaches to deal with them. The most
common type of log file is one composed entirely with text lines. Popular server’s
packages, like Apache (web), INN (Usenet news), and Sendmail (email) spew log text
in voluminous quantities. Most logs on Unix machines look similar because they are
created by a centralized logging facility known as syslog.

Sometimes it’s not easy writing programs to deal with log files. Instead of nice,
easily parseable text lines, some logging mechanisms produce nasty, gnarly binary
files with proprietary formats that can’t be parsed with a single Perl line. Luckily, Perl
isn’t afraid of these miscreants. Let’s look a few approaches we can take when deal-
ing with these files. Let look at two different examples of binary logs: Unix’s wtmp
file and NT/2000’s event logs. One important issue in log management is log consoli-
dation. It offers a way to organize, assure, correlate and control logs. All information
is sent and stored in a central host, known as a logging host or loghost. It is a signifi-
cant disk storage machine dedicated to receive these log messages sole purpose.

According to [3], a centralized scheme offers the following benefits: it is easier to
analyze what may have happened (normal behavior versus curious event), less likely
that a successful infiltrator could corrupt or alter relocated logs, and it simplifies the
collected logs off-line archival to removable media, or even a line printer.

There are two scenarios when we want to consolidate logs to be considered. Both
scenarios are based in a centralized scheme. The first scenario involves a unique host
which manages all logs. Log information is used in an operations center which gener-
ates alerts depending in the information found in the log’s repository. The principal

128 R. Gómez, J. Herrerias, and E. Mata

disadvantage of this scenario is that it defines a unique point of failure. Complete log
system depends on loghost availability.

The second scenario presents a stronger architecture. Logs are classified and
treated according to a classification based on the log source. There is a loghost for any
kind of generated log. This scenario gives more availability to the system, if the Win-
dows syslog fails, we can count with the Unix loghost.

Both scenarios have to arrange logs in a repository. If logs sources are not syn-
chronized on time, or they belong to different time zones, two related events can be
badly interrelated. For example, considering that event A is a message sent by host 1
to host 2, and event B is the reception of this message. If the internal clock of host 1
advanced in one hour in respect to host 2 clock, it will seem that event B happened
before event A. In order to avoid this kind of situations we propose to use logical
clocks.

3 Lamport’s Logical Clocks

One of the most important issues in a distributed system is the absence of a global
clock. Distributed processes cannot rely on having an accurate view of global state,
due to transmission delays. It has not sense to talk about a global state. The “time”
and “state” traditional notions do not work in distributed systems. It is necessary to
develop some concepts corresponding to “time” and “state” in ** uniprocessor sys-
tem.

“Time” concept in distributed systems is different that the one used in centralized
systems. This concept is used in distributed systems to order events generated in dif-
ferent hosts. Distributed system events are not total chaos. Under some conditions, it
is possible to ascertain the events orders. Lamport’s logical clocks try to catch this.

Lamport defines logical clocks to establish a distributed events global ordering. He
assumes that the execution process is characterized by an events sequence; an event
can be one instruction or procedure execution. It is also assumed that sending a mes-
sage is one event, receiving a message is one event.

Lamport defines a “happened before” relation () between two events. The rela-
tion is defined as follows:

• A B if A and B are within the same process (same sequential thread of con-
trol) and A occurred before B.

• A B if A is the event of sending a message M in one process and B is the
event of receiving M by another process.

• if A B and B C then A C.

Based in the previous statements, event A causally affects event B if A B. Dis-
tinct events A and B are concurrent (A | | B) if we do not have A B or B A.

It is important to note that events are local to each process (in our case, device).
They do not measure real time, only measure “events”. Logical clocks are consistent
with the happened-before relation and are useful for totally ordering transactions, by
using logical clock values as timestamps.

In order to determinate a logical clock value in a process, Lamport defines some
conditions.

 Using Lamport’s Logical Clocks to Consolidate Log Files from Different Sources 129

Assuming that Ci is the local clock for process Pi, the following rules apply

• if a and b are two successive events in Pi, then Ci(b) = Ci(a) + d1, where d1 > 0
• if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)
• if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

d value could be 1, or it could be an approximation to the elapsed real time. For
example, we could take d1 to be the elapsed local time, and d2 to be the estimated
message transmission time. The latter solves the problem of waiting forever for a
virtual time instant to pass.

We can extend the partial ordering of the happened-before relation to a total order-
ing on events, by using the logical clocks and resolving any ties by an arbitrary rule
based on the processor/process ID.

If a is an event in Pi and b is in Pj, a b iff

• Ci(a)< Cj(b) or
• Ci(a)=Cj(b) and Pi < Pj

where < is an arbitrary total ordering of the processes.
We propose to use logical clocks to define a total ordering relationship between all

the logs that a loghost receives. Every log will we stamped with its logical clock, and
the system will define which event happened first.

4 The Proposed Scheme

There are several approaches to accomplish log consolidation. In [4] the authors pro-
pose a model to write a log based in network behavior different in applications. They
argue that centralized logs do not contain enough information to determinate if logs
were generated by a user, an application or by other kind of event. They propose to
create a log which keeps all network’s requests, such a way to be possible to establish
a relationship between the user that manipulates the program, and the traffic produced
by the program.

In the other hand, some authors establish the need to define a log standard to facili-
tate loss reading and analysis originated in different sources. In the intrusion detection
area, it has been proposed a standard known as IDMEF [5]. It has been proposed the
Intrusion Detection Message Exchange Format (IDMEF) to define data formats and
exchange procedures to share interest information to intrusion detection and response
systems, and to the management systems which may need to interact with them. In [6]
the authors present a system to communicate an IDS and a firewall through the
IDMEF standard.

The IDMEF model has been extended in [7], but with a different approach. The au-
thors do not propose a standard for log events, instead they propose a format to make
log recording easier and flexible. Any log can be converted to this format, in such a
way that all logs can be analyzed with the same software.

Another approach is presented in [8]. The authors use small programs to read a log
and recollect information and store it in a data bases. These programs need to known
the log format they are going to read, so this can be considered a translation.

130 R. Gómez, J. Herrerias, and E. Mata

In [9] the authors present a log analysis and correlation overview, with special em-
phasis on techniques to manage tools within a network forensics context. They cover
the most important parts of log analysis and correlation, starting from the acquisition
process to the analysis. They introduce an IRItaly system which provides several tools
to do a log analysis. The correlation process involves logs comparison between differ-
ent machines.

Our proposal follows a centralized scheme. All devices generating logs send their
data to a host, the loghost. Every time a log arrives it is stamped with a value accord-
ing to the source and local time at the source. These values are stored in a database.

When a user wants to known all related data with a particular event it has to look
for it in the database, and it will be ordered in a causal relationship with the rest of the
events. This provides the user a complete view of all the events involved during an
incident.

In order to establish a total events ordering, Lamport’s logical clocks use an identi-
fier process and an internal clock. The internal clock is the time in which log was
generated, converted to an integer. We add hours, minutes and seconds to obtain a six
digits number. For example if the event was generated at 15:47:38, the number will be
154738. Identifier process is formed combining host Internet address and process
number to generate log. Internet address is translated to an integer, using the long
inet_addr() unix syscall, and then the pid is added to it. For example if internet ad-
dress is 10.45.69.89, (which representation number is 1497705738) and the pid is
3891, then the identifier process will be 14977057383891.

5 Implementation and Tests

In order to test our scheme we use three computers, running Red Hat Linux 9.0 over
them. One has installed snort IDS, the other one has IPTables activated ant the third
one received all logs generated by the two first.

5.1 Snort’s Logs

Snort is a versatile, lightweight and very useful intrusion detection system. Snort is a
lightweight network IDS, capable of performing real-time traffic analysis and packet
logging on IP networks. It can perform protocol analysis, content searching/matching.
It can be used to detect a variety of attacks and probes, such as buffer overflows,
stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and more.
Snort uses a flexible rules language to describe traffic it should collect or pass, and
includes a detection engine using an architecture modular plug-in.

Plug-ins allows the detection and reporting subsystems to be extended. Available
plug-ins includes database logging, small fragment detection, portscan detection, and
HTTP URI normalization.

Logs are optional in Snort, and administrator has to active it. Snort logs packets in
either tcpdump binary format or in Snort’s decoded ASCII format to logging directo-
ries that are named based on the IP address of the foreign host.

 Using Lamport’s Logical Clocks to Consolidate Log Files from Different Sources 131

Two examples of alerts/logs generated by snort are presented below.

[**] [1:1256:2] WEB-IIS CodeRed v2 root.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
03/30-19:35:54.306411 68.153.97.216:4464 -> 192.168.1.1:80
TCP TTL:122 TOS:0x0 ID:2271 IpLen:20 DgmLen:112 DF
AP Seq: 0x949963A3 Ack: 0xA3F9CDE1 Win: 0x4510 TcpLen: 20

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
03/30-19:35:54.555283 68.153.97.216:4477 -> 192.168.1.1:80
TCP TTL:122 TOS:0x0 ID:2302 IpLen:20 DgmLen:120 DF
AP Seq: 0x94A46F43 Ack: 0xA3CF89A0 Win: 0x4510 TcpLen: 20

5.2 IPTables Logs

IPTables, along with its companion netfilter, are collectively a software extension to
the Linux operating system which implements a stateful firewall framework. It also
enables other networking features such as network address translation (NAT). Al-
though netfilter is a Linux extension, it is included in all 2.4 or 2.6 kernel major Linux
distributions. Netfilter does not work with Linux kernels older than version 2.4.

Firewall treats packets leaving, entering, or passing through a host. Basically there
is a chain for each of these. Administrator has to set up certain rules on each of these
chains which decide what happens to data packets passing through them. Each rule
has two parts: a part which says the rule how to match the packet, and a part which
says what to do with the packet if it matches.

Administrator can configure IPTables to generate logs. Two examples of IPTables
logs are presented below:

Dec 21 11:40:08 kernel: IN=eth0 OUT= MAC=[] SRC=xx.yy.zz.98
DST=aa.bb.cc.64 LEN=60 TOS=0x00 PREC=0x00 TTL=50 ID=1564 DF
PROTO=TCP SPT=33576 DPT=37624 WINDOW=5840 RES=0x00 SYN
URGP=0

Nov 11 07:06:36 valhalla sudo: cbrenton : TTY=pts/1 ; PWD=/home/cbrenton
; USER=root ; COMMAND=/sbin/iptables -A FORWARD -i eth0 -p tcp
--tcp-flags ALL SYN,FIN -j LOG --log-prefix SYNFINSCAN
Test XXX YYY ZZZ

One important feature of IPTables is log prefixing. The prefixing capability allows

to define an iptables rule, and to specify a text string that should be recorded to the
logs whenever that rule is matched.

It is possible to use this feature to include a timestamp, but this will limit our
scheme to logs produced by IPTables.

132 R. Gómez, J. Herrerias, and E. Mata

5.3 The Data Recollection

All logs are sent to the loghost via the syslog facility. We use a mysql database to
store all the data. The database has four fields: internal clock field, process identifier
field, log itself and IP address. The user interrogates this database with a SQL query
to get the information it requires.

Computers clock presented differences between them, but logs were continuously
generated. When the user wants to list all the events with a total ordering it introduces
an initial and a final time. The system displays all the events ordered according to the
Lamport’s logical clocks rules.

As a database loss record example we consider that the host running snort has the
10.10.10.2 internet address, and that the process running snort has the 4142 identifier.
In the other hand the host with IPTables has the 10.10.10.5 address, and the process
identifier is 3857. Stored information at the database is described below

Internal clock Process identifier log IP address
101031 342123624142 log 1 10.10.10.2
101029 845440103857 log 2 10.10.10.5
101028 342123624142 log 3 10.10.10.2
101032 845440103857 log 4 10.10.10.5
101033 845440103857 log 5 10.10.10.5
101026 845440103857 log 6 10.10.10.5
101024 342123624142 log 7 10.10.10.2
101030 845440103857 log 8 10.10.10.5
101028 845440103857 log 9 10.10.10.5

Log is not showed, because it does not help to understand our scheme, and the en-

tries are sorted according to their arrival time. We can see that some logs arrived at
different order they were generated.

Once the events are sorted according to Lamports clocks, we obtain the following
list:

Internal clock Process identifier log IP address
101024 342123624142 log 7 10.10.10.2
101026 845440103857 log 6 10.10.10.5
101028 342123624142 log 3 10.10.10.2
101028 845440103857 log 9 10.10.10.5
101029 845440103857 log 2 10.10.10.5
101030 845440103857 log 8 10.10.10.5
101031 342123624142 log 1 10.10.10.2
101032 845440103857 log 4 10.10.10.5
101033 845440103857 log 5 10.10.10.5

The list show us the relationship between the different events.

 Using Lamport’s Logical Clocks to Consolidate Log Files from Different Sources 133

6 Conclusions

We presented a scheme to consolidate logs produced by different devices with differ-
ent local times. The scheme is based in Lamport’s logical clocks. Our implementation
shows that this scheme helps to have a general idea of all the events generated in a
time period.

It is important to remark, that devices were not modified; all work is done at the
loghost. Logs arrived and they are treated to stamp them.

Future work includes modify the system in order to include vector clocks, and to
define a causal chain between the events represented by the received logs.

References

1. Leslie Lamport, Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, Vol. 27, No. 7, July 1978, pp. 558–565.

2. Finlayson, D. Cheriton Log files: an extended file service exploiting write-once storage,
Proceedings of the eleventh ACM Symposium on Operating systems principles, Austin,
Texas, USA, 1987, pp. 139–148

3. D. Pitts, Log Consolidation with syslog, december 23, 2000, SANS Institute 2000–2002
4. Ahmad, A., Ruighaver, A.B., Design of a Network-Access Audit Log for Security Monitor-

ing and Forensic Investigation, Proceedings of the 1st Australian Computer Network, In-
formation & Forensics Conference , Perth, Nov 24, 2003

5. Internet Draft: draft-ietf-idwg-idmef-xml-12, The Intrusion Detection Message Exchange
Format, IETF Intrusion Detection Exchange Format Working Group, July 8, 2004.

6. R. Gómez, J. Herrerías, An example of communication between security tools: Iptables –
Snort, ACM Operating Systems Revies, submitted

7. M. Bishop, A Standard Audit Trail Format, Proceedings of the Eighteenth National Infor-
mation Systems Security Conference, Oct. 1995, pp. 136–145

8. Allison, Jared, Automated Log Processing, login: The Magazine of Usenix & Sage, decem-
ber 2002, volume 27 number 6, pp. 16–20

9. Dario V. Forte, Log Correlation Tools and Techniques. The art of Log Correlation. Pro-
ceedings of ISSA 2004 SouthAfrica, and HTCIA Conference 2004 Washington DC

A Simple Approach for Testing Web Service Based
Applications

Abbas Tarhini1,3, Hacène Fouchal2, and Nashat Mansour3

1 LICA/CReSTIC, Université de Reims Champagne-Ardenne Moulin de la Housse,
BP 1039, 51687 Reims Cedex 2, France
Abbas.Tarhini@univ-reims.fr

2 GRIMAAG, Université des Antilles et de Guyane, F-97157 Pointe-à-Pitre,
Guadeloupe, France

Hacene.Fouchal@univ-ag.fr
3 Computer Science Division, Lebanese American University,

PO Box 13-5053, Beirut, Lebanon
nmansour@lau.edu.lb

Abstract. The cost of developing and deploying web applications is reduced by
dynamically integrating other heterogeneous self-contained web services. How-
ever, the malfunctioning of such systems would cause severe losses. This paper
presents a technique for building reliable web applications composed of web ser-
vices. All relevant web services are linked to the component under test at the
testing time; thus, the availability of suitable web services is guaranteed at invo-
cation time. In our technique, a web application and its composed components
are specified by a two-level abstract model. The web application is represented as
Task Precedence Graph (TPG) and the behavior of the composed components is
represented as a Timed Labeled Transition System (TLTS). Three sets of test se-
quences are generated from the WSDL files, the TLTS and the TPG representing
the integrated components and the whole web application. Test cases are executed
automatically using a test execution algorithm and a test framework is also pre-
sented. This framework wraps the test cases with SOAP interfaces and validates
the testing results obtained from the web services.

Keywords: label transition systems, testing, verification, web service, web
application.

1 Introduction

The development of web applications received significant attention in the past few
years. They have been remarkably introduced into all areas of communication, infor-
mation distribution, e-commerce and many other fields. The use of web services also
provided a common communication infrastructure to communicate through the internet,
and enabled developers to create applications that can span different operating systems,
hardware platforms and geographical locations. Thus building reliable web applications
and web services should be considered seriously.

Originally, web sites were constructed form a collection of web pages containing
text documents and interconnected via hyper links. Only recently, the dramatic changes

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 134–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Simple Approach for Testing Web Service Based Applications 135

of web technology lead web applications to be built by integrating different components
from variety of sources, residing on distributed hardware platforms, and running con-
currently on heterogeneous networks. The construction of systems from different types
of software components faces various complexities and challenges such as maintaining
performance, reliability and availability of those systems. Thus the validation of such
web applications remains the main challenge. A Web application might invoke multiple
web services located on different servers with no design, source code or interface avail-
able. This forces designers to use black-box notions to select the relevant web services
from the pool of services found on the internet.

The technique presented in this paper is testing on the fly during the building of web
systems. That is, during the development process, we test the web application and its
interaction with remote services to select only relevant web services that build a correct
web system. First, we suggest a two-level abstract model to represent a web application.
Then, we generate three sets of test sequences that are used to automatically test the
web system. Next, an automated testing technique is presented: it selects all relevant
web services that interact with our web application and integrates them into the system
before invocation time. This will guarantee the reliability and availability of services
in the web application. Moreover, we present a test framework adapted from [13] for
supporting both test execution and test scenario management. In this work we do not
deal with performance, we only need a correct behavior. Moreover, the generated test
cases use only symbolic values for variables satisfying an adequate coverage criteria. In
order solve the state explosion problem, for test execution we may use either, boundary
values for variables, or, we use a heuristic to choose values. In both cases, the test
coverage will not be complete.

The rest of this paper is organized as follows. In Section 2 we present a brief back-
ground on web service models and previous work done on testing web services. The
modeling of web applications and needed definitions are presented in Section 3.
Section 4 presents our technique for testing web applications. In this section we show
how to generate and execute test cases. In Section 5 we present the testing framework
that is used to configure, generate and execute test cases. We conclude the paper in
Section 6.

2 Background

In this section, we present an overview of web service infrastructure and definitions,
and a brief survey of previous work done on testing web services.

2.1 Web Services Overview

Web Services were defined differently by vendors, researchers, or standards organiza-
tions. IBM defined web services as self-describing, modular applications that can be
published, located and invoked across the web [12]. They are Internet-based, modular
applications that uses the Simple Object Access Protocol (SOAP) for communication
and transfer data in XML through the internet [10]. In our study, we define Web Services

136 A. Tarhini, H. Fouchal, and N. Mansour

Service Broker

Find

Bind

Publish

Service provider Service requester

Fig. 1. Web service architecture

as self-contained component-based applications, residing on different servers, and com-
municating with other applications by exchanging XML messages wrapped in SOAP
interfaces.

Web services infrastructure is based on service-oriented architecture(SOA) that in-
volves three kinds of participants: service providers, service requesters and service bro-
ker (Figure 1). The provider publishes services to service broker. Service requesters find
required services using the broker and bind to them [12].

This infrastructure uses the following standards to make web services function to-
gether: Web Services Description Language (WSDL), Universal Description, Discovery
and Integration (UDDI), The Extensible Markup Language (XML), and Simple Object
Access Protocol (SOAP).

After creating a web service, the service provider generates the corresponding
WSDL file and publishes it on the internet. The WSDL file is a description of how
to access the web service and what operations this service can perform. On the service
broker, the UDDI registry holds the specification of services and the URL that points
to the WSDL file of services. The service requester searches for a web service in the
UDDI registry, then binds to it, and transmit massages and data using XML wrapped in
SOAP interfaces.

2.2 Testing Web Services

Several aspects make testing web services a challenging task. The heterogeneity of web
services that uses different operating systems and different server containers makes
the dynamic integration of these services a non-easy task. Moreover, web services do
not have user interfaces to be tested [11] and therefore they are hard to test manually.
Consequently, test frameworks, techniques, and tools have been studied by several re-
searchers.

Song et al. [13] proposed an XML-based framework to test web services. The frame-
work consists of two parts: the test master and test engine. The test master allows testers
to specify test scenarios and cases as well as performing various analysis and converts
WSDL files into test scenarios. The test engine interacts with the web service under
test and provides tracing information. [6] proposed ideas towards enabling testing web
services by using Design by Contract to add behavioral information to the specifica-

A Simple Approach for Testing Web Service Based Applications 137

tion of a web service. The behavioral information includes contracts that describe be-
havior offered and behavior needed (pre and post conditions) by a web service. Then
graph transformation rules are used to describe contracts at the level of models. Such
contracts would help much during the execution of test cases; however, a list of issues
are left open like creating XML-based language and UML-based notations for contracts.

[15] proposed a mobile agent-based technique to test web services. This approach
needs the authentication of servers to allow mobile agents execute external code on
them. It dynamically selects reliable web services at run time where no backup plan
presented in case of unavailability of services satisfying the test criteria. [4] presented
a white-box coverage testing of error recovery code in Java web services by provoking
exceptions and evaluating how the web service handles them. This method covers many
testing aspects, however, testing scenarios apply only to Java web services at a time web
services are platform independent. Moreover, this technique requires the knowledge of
web service code, at a time most web services are published as executable files and
should be treated as black boxes, thus such techniques could be considered for in-house
testing. [10] highlighted the difference between traditional applications and web ser-
vices; web services use a common infrastructure, XML and SOAP, to communicate
through the internet. The author presented a new peer-to-peer approach to testing web
services by using test cases generated from the modification of existing XML mes-
sages based on rules defined on the message grammar. This approach is based on data
perturbation. It uses data value perturbation (based on data type) and the interaction
perturbation that tests communication messages (RPC communication and data com-
munication). This approach relies on syntactic information about the XML messages;
thus lacks behavioral information that are supported more in specification-based testing
approaches which allow more detailed kinds of analysis.

Other testing tools and techniques focused on testing WSDL files and SOAP mes-
sages [8], and some recommended general best-practices that developers of web ser-
vices can apply such as functional, regression and load testing [5]. [2] highlighted on
what web services are and how to put to use. The author presented how to test web
services manually through a web page and automatically through a programming lan-
guage. Both approaches recommends to focus on what the web service expects as inputs
and what it defines as its outputs. [14] proposed to extend WSDL files to support infor-
mation useful for testing such as dependency information. By using these extensions,
we can easily retrieve the necessary useful information for web service testing. This can
greatly reduce the effort and cost to do these tasks and make the automation of these
tasks possible. [7] surveyed testing techniques that can be applied to web services and
detailed the advantages and drawbacks of some methods and tools. Then, the authors
suggests fault injection technique as a promising line of research that can be applied to
this problem.

Many papers have suggested testing Web services at invocation time, but performing
a full-scale test of Web services integrated in Web applications before launch
remains a considerable issue. Our testing technique selects and then associates all suit-
able web services to our web application before launch time; moreover, it suggests
testing the functionality of the web service integrated in the web application by execut-
ing test cases generated from (1) the WSDL files and (2) the specification of both the

138 A. Tarhini, H. Fouchal, and N. Mansour

component fulfilled by a web service and the specification of the whole web application.
This method guarantees the reliability and availability of services in our web applica-
tion by ignoring both all services that act errantly in a composed environment and hosts
of web services that act maliciously at invocation times.

In the following section we introduce some basic notations, the modeling of a web
application and the modeling of a single component in a web application which are used
in subsequent discussions.

3 Modeling Web Applications

Web-based software systems are constructed by integrating different interacting-
components from a variety of sources. The schedule of invoking the interacting-
components is restricted by the requirements specification of the web application and
by time constraints. These components interact with the main application as well with
other components by exchanging messages (actions) that might also involve timing
constraints. To model such systems, we suggest a two-level abstract model. The first
level models the interaction of components with the main application. The second level
of abstraction models the internal behavior of each component in the system. In the
following subsections we describe each model and illustrate it with examples.

3.1 Web Application Representation

Since Web applications are composed of components that interact by exchanging mes-
sages restricted by timing constraints, our first level of abstraction models a web appli-
cations as a Task Precedence Graph (TPG), where each node in the TPG is an abstract
representation of a single component in the system and an edge joining two nodes rep-
resents the flow of actions (transitions) between components. Every edge is labeled with
an action and its timing constraint.

Figure 2 illustrates a TPG representing a simple travel agency web application that
is composed of four components: Main Component (MC), Hotel Reservation (HR), Car
Rental (CR), and Weather Prediction (WP). The Main component (MC) is assumed to

MC��
��

�

CR��
��

HR��
��

WP��
��

�

?Car Rental;c=0

�

!Notice; c<10

�

?Hotel Reservation;c=0

�

!Notice; c<10
�

?Weather Request

�!weather info

Fig. 2. An example of TPG representing a travel agency web application

A Simple Approach for Testing Web Service Based Applications 139

be the background component that handles requests from the main web page in the web
system. Each of the attached components is invoked whenever its corresponding input
is selected and it returns the output back to the Main Component (MC). Thus, if the user
wants to reserve a hotel, the transition labeled (?Hotel Reservation; c =0; -) is executed
as soon as the input ?HotelReservation is invoked, and the clock c is set to zero, so
that it counts the time taken by the web service to fulfill the user request. The output
from the component HR should be sent back with in the time limit (c<10); if not, that
means the invoked web service might be not available, thus, the MC component will
request HR to contact another web service.

3.2 Single Component Representation

The second level of abstraction models every single component in the web application.
In this level, we suggest to model each component as a Timed Labeled Transition System
(TLTS). Each state in the TLTS represents a state of the modeled component. An edge
joining two states is labeled with an action and its corresponding timing constraint. It
represents a transition from one state to another. We formally define an TLTS as follows:

Definition 1 (Timed Labeled Transition System (TLTS)). An TLTS is defined by
M = (S, A, C, T, s0) where S is a finite set of states, s0 is the initial state, and A is
a set of actions. A is partitioned into 2 sets: AI is the set of input actions (written ?i),
AO is the set of output actions (written !o). C is a set of clocks.

T is a transition set having the form {Tr1.T r2...T rn}; Tri = <s; a; d; EC; Cs>, where:
s ∈ S and d∈ S are starting and destination states; a ∈ A is the action of the transition;
EC is an enabling condition evaluated to the result of the formula a ∼ b where ∼∈ { <,
>, ≤, ≥, = }; Cs is a set of clocks to be reset at the execution of transition Tri.

s0��
��

� s1��
��

s2��
��

s3��
��

s4��
��

s5��
��

s6��
��
��
�	

�?valid date in/out
�

?invalid date

	

?single

�

?wrong input

�?double

!Not Available
�

�
�

�
�

��
!Price ; c=0

!Not Available

�
�

�
�

��!Price ; c=0 �
�

�
��

?Confirmation ; c<5

�!Notice:Conf/Price

Fig. 3. An Example of TLTS representing simple hotel reservation

140 A. Tarhini, H. Fouchal, and N. Mansour

Figure 3 shows an example of TLTS representing a simple hotel reservation compo-
nent (HR) with initial state s0. A transition is represented by an arrow between two
states and labeled by the action, the timing constraint and clocks to reset (action; EC;
Cs). The TLTS in figure 3 is input-complete, if at state s0 the user input an invalid date
the system stays in s0; otherwise, it moves to state s1 where the users may choose either
a single or a double room, thus, the system may move to either state s2 or s3. As soon
as the appropriate input is selected the corresponding price is given, and clock c is set to
zero in order to count the time for the conformation back from the user, then, the system
moves to state s4. If the conformation is not sent with in the time (c<5) the session will
be timed-out.

4 Testing Methodology

Consider the web application illustrated in figure 2. In this work, this application is
thought to be a Component Based system (CBS) that contains a set of interacting com-
ponents (MC, HR, CR, WP), where the requirements of each component is already
defined and represented as a TLTS. Assume that component HR will be fulfilled by a
web service; therefore, we have to find all suitable web services, having similar func-
tionality, that satisfy the requirements of HR and do not act errantly in our composed
system (Figure 4), and then, link the selected services to our web application so that we
can use any of them at invocation time.

This is usually done by searching the UDDI registry each time our system requires a
web service. The UDDI registry holds the URL’s and the corresponding WSDL speci-
fication of services that are published by the service providers. After selecting the “op-
timal” web service, our system binds to the service’s web site and invokes the Web
service. In this dynamic invocation model it may not be possible to know which web
service will be used until run time [9]. Moreover, searching and testing web services

Ws1��
��

Ws2��
��

Wsn��
��
�

�

��

web services

MC��
��

�

CR��
��

HR��
��

WP��
��

�

?Car Rental; c=0

�

!Notice; c<10

�

?Hotel Reservation; c=0

�

!Notice; c<10

� ?City Name

�
!weather

Fig. 4. An Example Web service oriented web CBS

A Simple Approach for Testing Web Service Based Applications 141

whenever the system requires them would generate enormous network traffic and, still,
may not find a suitable web service.

In our method, we suggest to select the web services during the development of our
CBS. The method proceeds as follows: while building the CBS, if a component,HR,
is implemented by a web service, the UDDI registry is searched and a set of WSDL
files describing the candidate web services is found. Next, our task is to find all suitable
web services and to eliminate all web services that does not satisfy the requirements
of HR. Then, we test the selected web services to ignore all services that act errantly
when integrated in our system. The new set of selected web services is saved into a
log file linked to the component HR so that any of these suitable web services could
be used later depending on its availability, without having to search the UDDI registry
every time the service is needed. To reach our aim, we have to generate three sets
of test sequencess. The first is used to select all adequate candidate web services that
satisfies the requirements of our component. The second set is used to test the selected
web services individually, and the third set is used to test the interaction of the suitable
web services as a composed component in our web application. The generation of test
sequences is detailed in section 4.2.

4.1 Testing Web Applications

Contrary to other testing techniques, our proposed testing method selects all suitable
web services only once, during the testing of the web application, rather than selecting
them each time the web application is invoked. This will help the developer to build a
reliable and available web application. The links to all selected suitable web services are
saved into a log file associated with the component to be fulfilled by the web service.
The log file contains the urls of all suitable web services and the set of test cases used
to test this component. Using this log file, the web application would have a wide range
of finding available and suitable web services at invocation time. This method tests the
web service individually (as a stand-alone component) and as a part of the web CBS.
The method consists of four main steps described in the following algorithm:

Step 1: Search the UDDI registry for candidate web services. For each candidate web
service found in the UDDI registry, we parse the WSDL file of web service
under test (WSUT) to check whether the interface of this web service matches
with the specification of our component. If the interface does not match, this
process is stopped and we check another candidate web service in the UDDI
registry; otherwise, we move into the second step.

Step 2: We connect to the web service’s site and start testing the actual web service as
a stand-alone component by sending SOAP messages generated from the first
set of test cases, then we check the correctness of the information received as
SOAP responses from the web service by matching them with the correspond-
ing outputs in the test cases. If the web service does not pass this test, it is
ignored and we start checking another web service; otherwise, we move to the
third step.

Step 3: We continue testing the actual web service as a stand-alone component by
sending SOAP messages generated from the second set of test cases, then we

142 A. Tarhini, H. Fouchal, and N. Mansour

check the correctness of the information received as SOAP responses from the
web service by matching them with the corresponding outputs in the test cases.
If the web service does not pass this test, it is ignored and we start checking
another web service; otherwise, we move to the fourth step.

Step 4: We test the interaction of this web service as a component in our system by
sending SOAP messages generated from the third set of test cases, then we
check the correctness of the information received as SOAP responses from the
web service by passing those outputs to the respective components in the web
CBS and monitor the behavior of the whole system, taking into consideration
the time restriction on responses. If the web service does not pass this test, it
is ignored.

If the web service under test (WSUT) passes the four steps of the above algorithm,
then the information -(including the url, the first and second sets of test cases)- about
WSUT is saved into a log file associated with the component to be fulfilled by a web
service. Next, this process is repeated until all candidate web services are tested. In any
of the above steps, information about errors occurred during testing is saved in an error
log file associated with the component under test. If non of the web services matches
our component under test, then the error log file should be considered to modify the
requirements of that component.

4.2 Test Case Generation

To make a decision about selecting a web service that fulfills a component, we have to
(1) find all adequate candidate web services, (2) test those web services independently
(as a stand-alone components) and select the ones that fulfill the functional requirements
of our component, and (3) test the reliability of the selected web services’ interaction
as a part of our web component based system. Thus, test sequences are divided into
three sets. In this work, the generated test cases use only symbolic values satisfying an
adequate coverage criteria.

The first set, which tests the adequacy of the web service independently, is gen-
erated from information found in the WSDL file of the web service. In this set, test
cases are generated based on boundary value testing analysis [3]. Traditional boundary
value testing typically involved either boundaries in numerical data types such as in-
tegers, floating point numbers, or real numbers or else the end points of enumeration
types. In this work, for numerical data types, the negative and positive numbers would
be bounded by the limitations defined in the XML schemas: the most possible negative
number, zero, and the most possible positive number. With string data types, the bound-
ary values are maximum length and minimum length as defined in the XML schemas,
and for boolean it is true and false. The generated test cases contains information about
(a) the input boundary values to be sent to the web service and (b) the output boundary
values to be used for validating the output received from the web service. To illustrate,
we consider the following WSDL file that describes a web service for weather forecast-
ing taken from [1]. It takes as an input the CityName and returns the corresponding
Humidity.

A Simple Approach for Testing Web Service Based Applications 143

<types>
<xsd:schema targetNamespace="http://www.capeclear.com/AirportWeather.xsd" xmlns:SOAP-ENC=
"http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
</types>
<message name="cityName">

<part name="arg0" type="xsd:string" />
</message>
<message name="getHumidityResponse">

<part name="return" type="xsd:double" />
</message>
<portType name="Station">
<operation name="getHumidity">

<input message="tns:cityName" />
<output message="tns:getHumidityResponse" />

</operation> ...

Based on the boundary value analysis method, the first set of test cases for method
“getHumidity” generated form the above WSDL file could rely on the following:

The Input argument is of type string:
maximum value: "00000000000000000000000000". minimum value: "null".

The Output is of type double:
maximum value: 263 − 1. minimum value: −263. zero: 0.

The second set of test sequences is used to test the behavior of the web service
individually. Therefore, this set should be able to test the functionality of all possible
actions in the service. Thus, we generate this set by traversing all paths going from
the initial state of the TLTS representing the component to be fulfilled. To illustrate,
consider Figure 3 that shows the TLTS for the HR component. Due to space limitation
we only list three test sequences of the second set generated from the TLTS paths:

T1: <?invalid date;-;->
T2: <?valid date;-;->.<?single;-;->.<!Price;-;c=0>.<?Confirmation;c<5;-><!Notice;-;->
T3: <?valid date;-;->.<?double;-;->.<!Price;-;c=0>.<?Confirmation;c<5;-><!Notice;-;->

The third set of test cases tests the interaction of the web service as a part of our web
CBS. Therefore, this set should perform a full-test coverage of the whole system. The
whole system is covered by invoking all possible actions in the main web application as
well as invoking the internal actions of the composed components. Thus, we generate
this set by traversing all paths going form the initial state of the TPG representing the
web CBS including the paths of the TLTS representing the inner actions of the composed
components. To illustrate, consider figure 4 that shows the TLTS for the web CBS. A
sample test sequences of the third set generated from the TLTS paths would be:

T4: <?HotelReservation;-; c=0>.<?invalid date;-;->
T5: <?HotelReservation;-; c=0>.<?valid date;-;->.<?double;-;->.<!Price;-;c=0>.

<?Confirmation;c<5;-><!Notice;-; c<10>
T6: <?HotelReservation;-; c=0>.<?valid date;-;->.<?single;-;->.<!Price;-;c=0>.

<?Confirmation;c<5;-><!Notice;-; c<10>
T7: <Weather Request;-c=0>.<?cityName;-;c=0>.<!WeatherInfo; c<10;->

144 A. Tarhini, H. Fouchal, and N. Mansour

A sample SOAP request and response message that would wrap the above test case (T7)
would look like:

...
SOAPAction: "http://www.myasptools.com/GetWeather"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetWeather xmlns="http://www.myasptools.com/">

<cityName>Paris</cityName>
</GetWeather>

</soap:Body>
</soap:Envelope>
...

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetWeatherResponse xmlns="http://www.myasptools.com/">

<GetWeatherResult>
<Humidity>70</Humidity>

</GetWeatherResult>
</GetWeatherResponse>

</soap:Body>
</soap:Envelope>

In order to have an adequate state coverage, test sequences are generated by travers-
ing, from the initial state, all paths of components’ TLTSs (for the second set) and all
paths of the TPG concatenated with the paths of the components’ TLTSs (for the third
set), still, we do not fear path explosion since both the web application and web service
have a finite number of states to be covered by the test sequences and the test cases are
assumed to be generated using only symbolic values for variables satisfying an adequate
coverage criteria.

To assure a full-test coverage, test cases may use all possible values; however, this
process is too expensive. In order solve the state explosion problem, for test execution
we may use either, boundary values for variables, or we use a heuristic to choose values.
However, in both cases, the test coverage will not be complete.

In the next section, we present the test framework that is used to implement our test
method. It wraps the test cases with SOAP interfaces and validates the testing results
back from the web services. It supports both execution and test scenario management.

5 Web Service Testing Framework

The framework that we use to test our web services is adapted from [13] with some
modifications. It consists of two parts: test master and test engine (Figure 5).

The test master (1) extracts the interface information from the WSDL file and maps
the signatures of the service into test scenarios, (2) extracts paths from the TLTS and
maps them into test scenarios. The test cases are generated from the test scenarios in
the XML format which is interpreted by test engine in the second stage. Test engine
reads the test scripts produced by the test master and executes the test at the target web
services, it also saves the execution trace into log files and sends the test results back to
the test master. The actual test execution involves three phases:

A Simple Approach for Testing Web Service Based Applications 145

Fig. 5. Web Service Testing Framework

– Configuration: Configure the test scenarios from the WSDL and TLTS.
– Test: Generate the SOAP request messages, and invoke the particular service

method with the respective input parameters.
– Validating: Check and assess the testing results in the SOAP response messages

against the expected output specified in the test scripts, and save the suitable ser-
vices in the log file.

6 Conclusion

This paper has presented a simple approach for building reliable web applications. A
two-level abstract model is introduced to model the web application as a Task prece-
dence graph (TPG) and the internal behavior of components as Timed Labeled Transi-
tion Systems (TLTS). One contribution of this paper is that it allocates all suitable web
services that fulfill a component during the testing of the web application rather than
during invocation time. This will give a wide range for rapid selection of available web
services at invocation time. Another contribution is the full-coverage test cases that are
generated form the WSDL files and the TLTS of the integrated components and the
TPG of the whole web application. A third contribution is the Test-execution algorithm
that generates two log files. The first log file contains all suitable web services that
fulfill a component. The second is the error log files that contains information about
non-suitable service that could be re-considered by the test architect. Finally, a testing
framework is presented, it supports both execution and test scenario management.

Further research will focus on regression retesting method that may reveal any
modification-related errors in the web application. We intend to implement our
technique on a real industrial web application to prove its applicability. Moreover, a
heuristic for test case selection will be studied.

146 A. Tarhini, H. Fouchal, and N. Mansour

References

1. ALTOVA. Web service description language for weather forecasting. In www.altova.com,
November 2005.

2. T. Arnold. Testing web services (.net and otherwise). In Software Test Automation Confer-
ence, March 2003.

3. Boris Beizer. Testing Techniques. Second Edition. New York, VanNostrand Reinhold, 1990.
4. A. Milanova C. Fu, G. Ryder and D. Wonnacott. Testing of java web services for robustness.

In Proceedings of the International symposium on Software Testing and Analysis (ISSTA’ 04)
, July 11-14, 2004, Boston, Massachusetts, USA, pages 23–33, July 2004.

5. J. Clune and L. Chen. Testing web services (methods for ensuring server and client reliabil-
ity). In Web Sphere Journal, February 2005.

6. R. Heckel and M. Lohmann. Towards contract-based testing of web services. In International
Workshop on Test and Analysis of Component Based Systems, Bercelona, March 2004.

7. N. Looker, M. Munro, and J. Xu. Testing web services. In The 16th IFIP International
Conference on Testing of Communicating Systems, Oxford, 2004.

8. Vance McCarthy. A roadmap for web services management. In www.oetrends.com,
November 2002.

9. N. Gold, C.Knight, A.Mohan, and M.Munro. Understanding service-oriented software. In
IEEE Software, March 2004.

10. J. Offutt and W. Xu. Generating test cases for web services using data perturbation. In
Workshop on Testing, Analysis and Verification of Web Services. July 2004, Boston Mass.,
September 2004.

11. N. Davidson.The Red-Gate software technical papers. Web services testing. In www.red-
gate.com, 2002.

12. IBM Web Services Architecture team. Web services overview. In IBM, 2004.
13. W. Tsai, R. Paul, W. Song, and Z. Cao. Coyote:an xml-based framework for web service

testing. In Proceedings of the 7th IEEE International Symposuim on High Assurance System
Engineering, October 2002.

14. W. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang. Extending wsdl to facilitate web service
testing. In Proceedings of the 7th International Symposium On High Assurance Systems
Engineering, 2002.

15. J. Zhang. An approach to facilitate reliability testing of web services components. In Pro-
ceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’
04), November 2004.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 147 – 158, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimizing and Reducing the Delay Latency of Mobile
IPv6 Location Management

Abbas Malekpour, Djamshid Tavangarian, and Robil Daher

Chare for Computer Architecture, Institute of Computer Science,
University of Rostock, Albert-Einstein-Str. 21,

18059 Rostock, Germany
abbas.malekpour@uni-rostock.de

http://wwwra.informatik.uni-rostock.de

Abstract. The long latency related with Mobile IPv6’s home-address and care-
of-address tests can considerably impact delay-sensitive applications. Applying
the ingress-filtering in a proper way over the networks can prevent the source
IP address spoofing which is used by the malicious nodes to launch some sort
of attacks. We have suggested a new communication mode which is called Very
Early Binding Update Mode (VEBU) for mobility in IPv6. The VEBU elimi-
nates the long delay-latency associated with mobile IPv6 mobility messages
either in start of a session or during a session after a handover. Our communica-
tion mode allows an optimistic mobile node (MN) to run in one less round-trip-
time compared to the route optimization mode.

1 Introduction

Mobile IP is designed to solve the mobility problems which allows a flow of data
streams between a MN and its Correspondent node (CN), and try to keep this com-
munication as seamless as possible (i.e. with minimum possible delay latency) [1] [2].

MN is expected to be identified by its static “home address” anywhere in the inter-
net regardless of its current location. MN also can be addressed by a temporary asso-
ciated address at its current location when it is located in a foreign network (i.e.
Care-of address). Packets destined to a MN can be directly routed to its new Care-of
address. Communicating on the direct path between the MN and it’s correspondent,
raises some security concerns. Mobile IPv6 prepared some mechanisms (e.g. Return
Routability) to solve this security concerns. Usually, these mechanisms are time
costly which affects on the Quality of Service (QoS) of mobile networks. It is obvious
that communicating on a longer path also cause more packet loss. There is a tradeoff
between the security and optimization (i.e. having less delay-latency and packet-loss)
of the mobile IP networks.

With the advent of different radio access mechanisms and increasing deployment
of sophisticated applications in mobile end systems, IPv6-based networks will in-
creasingly have to support Quality of Service (QoS) in mobile environments. It is
necessary to decrease the delay latency of the MNs movements for the specific re-
quired level of quality of services (QoS). It is also essential to provide proper Quality

148 A. Malekpour, D. Tavangarian, and R. Daher

of Service (QoS) forwarding treatment to the packets sent by or destined to MN as
they propagate along different routes in the network due to node mobility.

Currently, the standard protocol for Mobile IPv6 does not support fast handover for
time-critical and loss-sensitive applications. To address this problem, some extensions
of Mobile IP for Location Management and Handover of mobile IPv6 are being de-
veloped. The location management is used to provide and maintain the current loca-
tion of a MN, and keep track for its movement, while handover management (e.g.
Fast Handover for Mobile IP or Hierarchical Mobile IP [5],[6]) is used to perform an
uninterrupted session when it moves into different sub-nets during a session [7]. This
paper is focused on Location Management of mobile IPv6.

Mobile IPv6 standard protocol has defined two mechanisms including “bidirec-
tional tunneling” and “route optimization” for the location management of mobile
IPv6 [2]. Both methods are not able to support the real-time applications (e.g. VOIP)
for a desired level of QoS [14]. There are some enhanced approaches such as “Bind-
ing Update Backhauling”(BUB), “Early Binding Update” (EBU) and “pre-configure
kbm” for dominating and reducing the related delay latency of mobile IPv6 location
management.

This paper aims to analyze whether, and to what extent, the location management
of Mobile IPv6 complies with the identified requirements of real time application
scenarios. For any requirements that fail to be fulfilled, existing alternative ap-
proaches are to be found. Finally, we have suggested a solution which has reduced the
delay latency of mobility management for the applied ingress filtering networks area.

Section 2 is a recap on background and related work on mobile IPv6. Section 3 will
point on shortfalls of existing solutions and section 4 explains our enhanced commu-
nication mode.

2 Background and Related Works

This section firstly explains a general overview of mobile IPv6 and its standard com-
munication modes. This overview helps to understand the rational behind the mobile
IPv6 communication modes. In fact, this section tries to clear why a MN has to en-
gage with these processes and consequently related delay latency. Finally the en-
hanced approaches which are tried to reduce this delay latency will be summarized.

2.1 Mobile IPv6 Standard Communication Modes

Mobile IPv6 uses two IP addresses per MN in order to separate localization semantics
from identification semantics: A transient “care-of address” routes to the MN’s cur-
rent point of IP attachment. A static “home address” serves as an identifier at stack
layers above IP. CN can send the packets to either address for MN. When sends to
the care-of address, the packets reach the MN directly. Otherwise, the packets will be
routed to the MN’s “home network”. MN registers its current Care-of address with a
router on its home network, which is called Home Agent (HA). HA enables a MN to
be addressed only with one static IP address (home address) regardless of its new
current location address. HA intercepts the packets, encapsulates them, and tunnels

 Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management 149

them to the care-of address. Vice versa, the MN may send its packets from the care-of
address directly to the CN, or it may tunnel them to the HA to have them sent from
the home address. Relaying packets through the HA is called “bidirectional tunneling
mode” and sending them directly is called “route optimization mode”. These modes
are the standard mobile IPv6 communication methods.

Fig. 1. Bidirectional Tunneling

Route optimization has the interesting properties that it saves a lot of routing over-
head compared to bidirectional tunneling. However, route optimization bears a secu-
rity challenge, since two communication peers do not necessarily have to be ac-
quainted. [8] gives a detailed account on the Mobile IPv6 security design. Relevant to
this document are the following two questions.

• When the CN receives a command to redirect node X’s packets, how can it be sure
that it is X itself, rather than a malicious third node, who has send this command?

• Assuming that the CN can somehow identify X as the originator of a certain re-
direction request, how can it rely on X actually being present at the IP address to
which packets are to be redirected?

The first question raises an authentication issue, the second points to the lack of trust
between the peers. There are a variety of possibilities how one could have realized
authentication in Mobile IPv6. A desire to be independent from a global, trusted infra-
structure motivates to a different strategy: return routability (see Fig. 2.).

In return routability procedure a MN sends to the CN two messages in parallel: a
Home Test Init message (HoTI) and a Care-of Test Init message (CoTI). The HoTI
message is tunneled to the MN’s HA, and forwarded on to the CN. The HoTI message
includes a random Home Init Cookie. The Home Init Cookie will be returned by the CN
in the Home Test message (HoT). Both the HoTI message and the HoT message are
protected by IPsec on the path between the MN and MN’s HA [4]. The MN considers
this a sufficient proof that the Home Test message was generated by the CN itself.

Fig. 2. Return Routability Message diagram

Mobile node

Home Agent

Correspondent node

Secured Path (IPsec)

Not Secured Path

Home Test Init

Care-of Test Init
Home Test

Care-of Test

CN HAMN

150 A. Malekpour, D. Tavangarian, and R. Daher

The CoTI message does not go through the MN’s HA. It takes the direct path to the
CN. The CoTI message includes a random Care-of Init Cookie. The Care-of Init
Cookie will be returned by the CN in the CoT message which proofs the CoT mes-
sage came from the right CN.

The HoT message contains a Home Keygen Token, a Home Nonce Index, and the
Home Init Cookie copied from the HoTI message. The Home Nonce Index identifies
a random value based on which the CN has computed the Home Keygen Token.

The MN will include the Home Nonce Index in the subsequent Binding Update
message to allow the CN to reproduce the Home Keygen Token.

Likewise the HoT message, upon receiving the CoTI message, the CN sends back
to the MN directly a Care-of Test message (CoT). The CoT message contains a Care-
of Keygen Token, a Care-of Nonce Index, and the Care-of Init Cookie copied from
the CoTI message.

The MN uses the Home Keygen Token and the Care-of Keygen Token to produce
a secret key that called the Binding Management Key (kbm), shared with the CN.

After the return routability, the MN then generates a Binding Update message to be
sent to the CN. The Binding Update message contains a message-authentication code
(MAC) produced with the Binding Management Key. It also contains the Home
Nonce Index and the Care-of Nonce Index [2].

2.2 Binding Update Backhauling

The binding update backhauling (BUB) is an alternative mode for communication in
the mobile IPv6 networks [9]. The authors of the BUB have aimed to design a solu-
tion, which establish a security association at the start of the BUB mode for each
session and use it during an ongoing session for any further binding update. They
desired to have a protected binding update for high frequent movement scenarios.
They also believe the BUB method is a solution for the scenarios, which both of the
parties are MN (i.e. CN is also a MN) and may move from one sub-net to another sub-
net at the same time (double jumping).

BUB mode, firstly initiates a BUB Test in parallel with Return Routability Test.
BUB Test check whether the both parties are agreed on communicating in this mode
or not. Having finished the BUB test, both parties will be establishing a bidirectional
security association with the use of Diffie-Hellman between themselves [10]. Diffie-
Hellman uses the binding management key (kbm) as a pre-shared secret for its signa-
ture. This security association will result a session key. The session key is used for
authenticating any further BU. The authors believe, such a security association not
only increases the security of BU but also eliminates the need for any further
HoTI/HoT and CoTI/CoT messages during the ongoing sessions. In fact, the MN after
the hand-over or updating the previous BU which is going to be expired, only sends a
BU protected by session key. Having received the Binding Acknowledgment, the MN
can start using its new address again.

As a result this mode has a big startup time for starting a session due to BUB Test,
Return routability and Diffie-Hellman security association. But any further BU after
the handover during a session does not need to run the return routability test again.
Authors believe that there is no need for CoTI/CoT during a session but we think it
has a risk of flooding a third party attack.

 Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management 151

2.3 Early Binding Update

The Early Binding Update (EBU) mode is based on the rout optimization [11]. The
EBU suppose that the home test must not necessarily execute after the handover dur-
ing a session. The MN runs the home test whenever it feels a movement is imminent,
or run the home test periodically. The MN sends a temporary binding update based on
the most recent home test toward its correspondent in direct path after the handover,
which is called Early Binding Update. This EBU carries a message-authentication
code, which has been encrypted with a kbm. This kbm is produced by a one-way hash
function only on the home keygen token.

An optimistic MN can start using the new care-of address after dispatching the
EBU. The MN runs the care-of test (i.e. sending CoTI) and home registration in paral-
lel with the EBU. The CN adds a Temporary Binding Cache Entry with a limit expira-
tion time in its Binding Cache. The correspondent also replies to the CoTI with a CoT
message.

A conservative MN does not use the new care-of address until receiving the early
binding acknowledgment. Having received the CoT, the MN starts to send a standard
BU towards its HA in direct path. The standard binding update use the kbm which has
generated based on the concatenation of the home keygen token and care-of keygen
token for producing the message-authentication code. Moreover, the CN will change
the Temporary Binding Cache Entry to a standard Binding Cache Entry. If the CN
does not receive a standard binding update in the specified time, it will remove the
Temporary Binding Cache Entry. Moreover, if a CN does not support the EBU, it can
easily ignore it. The Early Binding Update is fully backward compatible with the
standard mobile IPv6.

This mode reduced the delay latency related to return routability but increased the
risk of flooding third party attack.

2.4 Preconfigured Binding Management Key

This mode according to the following condition allows the communication parties to
generate a “binding management key (kbm)” before they are going to communicate
with each other. MN uses this kbm in any further binding update with its correspon-
dent. In fact, the MN and its correspondent generate this key periodically in a long
period of time. If the MN were to move every hour, 24 hours a day, every day of the
year, this would require changing keys every 7 years [12]. This mode assumes the
following conditions:

• MN and CN have reasonable reason for trusting each other (e.g. administered
within the same domain)

• the CN can punish the MN if it has not proper behavior (e.g. contract or some
other forces)

• correspondent has some diagnostic procedures which can prove the MN trust-
ability

It is obvious that this mode is relatively fast but it is limited only for some special
scenarios and not all.

152 A. Malekpour, D. Tavangarian, and R. Daher

3 Problem Description in Existed Solutions

Successful employment of mobile IPv6-based services, including VoIP, requires pro-
vision of end-to-end adequate QoS level across the heterogeneous networks to meet
the desired expectation services.

Standard mobile IPv6 communication modes (i.e. route optimization and bidirec-
tional tunneling) are both engaging with long-delay latency. Since Bidirectional tunnel-
ing exchanges all the packets via the HA, it causes a longer path for all data packets.
Suppose a scenario that a student who studies in Germany has gone to a seminar in
USA. Since he has his account from Germany; therefore, his home network is located
in Germany. If this student wants to receive some file from the seminar’s server,
which is located in the seminar hall (perhaps with less than 10 meter distance) via his
laptop, each data packet must fly from the seminar server in USA to the HA in Ger-
many and then turn back to the laptop in the seminar hall again. Each packet instead
of 10 meter, it must fly many thousand of kilometers which costs a long delay latency.

In other side route optimization besides its security problems [13], it needs at least
1.5 round-trip times (RTT) before starting any data exchange. In fact, it needs one RTT
for return routability and half RTT for sending a BU. These RTTs in some scenarios
may cost some seconds which is not acceptable for the expected level of QoS [14].

BUB tries to have the efficiency of route optimization in direct communication path
while supporting for better security, especially for the case, that both communication
parties are MNs. The BUB uses the Diffie-Hellman key exchange for generating a ses-
sion key. Diffie-Hellman operations need heavy computations, which has a big over-
head on the processors of mobile devices. This processing overhead can be more critical
if the MN is involved with small session’s scenarios. In other side, the lack of Care-of
Test in this mode helps an attacker to easily flood a victim node somewhere in the inter-
net. It is also noticeable that this mode has a big setup time (nearly 3.5 RTT). In Overall,
if we ignore its security fault and suppose that the mobile devices have enough power of
processing this mode can be a good choice for some scenarios.

The early binding update has solved the delay latency of MN after the handover
due to the return routability test. The early binding update runs the home test when-
ever a handover is eminent or periodically. Therefore, it tries to maintain a fresh home
test with its correspondent. The early binding update with use of the recent home test
will send an early binding update. Then the Care-of Test will run and finally the stan-
dard binding update will be established. There is a time between the EBU and stan-
dard binding update, that an attacker can use the lack of Care-of Test for launching
some sort of attack (i.e. flooding or denial-of-service attack). However, it has solved
the delay latency after the handover but raised more security concerns and more mo-
bility signaling. Credit-Based Authorization for Binding Lifetime Extension is a solu-
tion to dominate EBU security fault [16].

The “Pre-configure kbm” mode is one of the best solutions for mobility in mobile
IPv6 but it is limited for the mentioned criteria that are not applicable in all scenarios.
In this mode, a MN can starts or continue its communication after a handover in one
RTT sooner than the standard route optimization. Next section is dedicated to our new
approach which is a new communication mode for mobile IPv6.

 Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management 153

4 Very Early Binding Update

Very early binding update is an enhanced mode for reducing the delay-latency of
mobile IPv6 location management. This mode is not only needs less messages but
also is more secure. VEBU has reduced this delay-latency by eliminating the return
routability test and suggesting a new mechanism which allows a MN to start its com-
munication with a correspondent without any delay even for a started session. VEBU
presumes that ingress filtering is applied globally over the Internet. Ingress filtering
prevents the attacker who wants to use source IP address spoofing in their attacks.
This mechanism prevents the packets originated from a sub-net toward other subnet
with the source IP address, which does not belong to the originated sub-net. Ingress
filtering allows the provider to track and identify the source of any “denial-of-service”
attacks being initiated by a customer [15].

The rational behind the VEBU mode is to send two dependent and integrated mes-
sages in both paths, one in direct path, and the other via the HA. These messages
make some assurance for the correspondent that the MN is reachable in two ad-
dresses, home address and care-of address. The procedure is depicted in Fig. 3.

Fig. 3. Very Early Binding Update Message Diagram

The following seven steps show how the VEBU mechanism works. If ingress filtering
is applied globally over the internet, only the first four steps are needed and the rest is not
necessary otherwise we should go through the whole process. Any variable or function
such as Message Authentication Code (MAC), kbm and Kcn which is not explicitly
explained here, is fully backward compatible with the standard mobile IPv6 [2] ,[3].

1) MN uses IPsec with tunneling mode to send a binding update towards its HA.
The MN generates and sends a “mobile keygen token” and related “mobile nonce
index” in this message. The mobile keygen token may build as:

Mobile keygen token = first (64, HMAC_SHA1 (Kmn, (home address | nonce | 0)))

Each MN has its own secret key, Kmn, which is used to produce the mobile keygen
token. This message can be assumed as follow:

Home Agent Mobile node Correspondent node
Home Registration (1)

Very Early binding Update (2)

Standard Binding Acknowledgement (7)

Home Test (5)

Very Early binding Update Acknowledgement (4)

Standard binding Update (6)

Home Test Init (3)

Secured path by IPsec
Unsecured

Start Date Communication if Ingress Filtering is applied

Start Date Communication if Ingress Filtering is not applied

154 A. Malekpour, D. Tavangarian, and R. Daher

• Source address = care-of address
• Destination address = home agent address

This binding update message contains:

• Mobile keygen token
• Mobile nonce index
• Home address

Note: according to [2] MN and HA are supposed to have a pre-shared secret key and
know each other from a previous relationship. In fact, the MN cannot fool its HA and
any cheating is track-able.

2) The MN also sends a VEBU in direct path towards its CN. This message con-
tains a MAC, which has signed by the kbm generated only by the MN keygen token
(in standard Mobile IPv6 it is generated by home keygen token and care of keygen
token). This message must not carry the MN keygen and related nonce index. This
message can be assumed as follow:

• Source address = care-of address
• Destination address = correspondent address

This Very Early Binding Update message contains:

• MAC (i.e. generated only by mobile keygen token)
• Home address

3) HA checks the validity of this binding update; if accepted, the HA will register
this MN’s care-of address and sends a HoTI message towards the MN’s correspon-
dent. This message is assumed as follow:

• Source address = home agent
• Destination address = correspondent address

This message also contains:

• Mobile keygen token
• Mobile nonce index
• Home address

4) Having received the both messages in both paths, the CN generates a MAC ac-
cording to the received mobile node keygen token (i.e. Within the HoTI message) and
checks integrity of the both messages by comparing the received MAC and generated
MAC. The correspondent will add a Tentative Binding Cache Entry (TBCE) for this
MN’s care-of address. The life-time of TBCE should be defined very precisely other-
wise, it may raise many security concerns such as third party flooding attack [16].

CN generates a correspondent keygen token and related nonce index. The corre-
spondent keygen token may form as below:

Correspondent keygen token = first (64, HMAC_SHA1 (Kcn, (care-of address | nonce | 1)))

The CN will send nonce indices in direct path and the correspondent keygen token via
the HA. Therefore, the CN forms a very early binding update acknowledgement
(VEBUA) message as below towards the MN in direct path:

 Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management 155

• Source address = correspondent address
• Destination address = care-of address

This message also contains:

• Home address
• Nonce indices

5) The CN also sends a Home Test message via the HA towards the MN. This mes-
sage will carry the correspondent keygen token. In fact, the CN by sending the nonce
indices in direct path and correspondent keygen token via the HA proves the MN’s
accessibility in both addresses by itself. This message may have the following form:

• Source address = correspondent address
• Destination address = home address

This message also contains:

• Correspondent keygen token

6) Having received the both messages by the MN, the MN will generate the related
kbm (only with use of correspondent keygen token). The MN will send a standard
binding update towards the MN in direct path. Only the right MN which is located in
the claimed care-of address (i.e. the receiver of the nonce indices) and accessible via
the home address (i.e. the receiver of the correspondent keygen token) can generate
the wanted kbm. In addition, only this right mobile node receives the correspondent
nonce index that can send it in the further standard binding update.

7) On the other side, the correspondent aga in checks the validity of this binding
update. If it is consistent and accurate, firstly, it converts the Tentative Binding Cache
Entry to a standard binding Cache Entry and secondly, the CN will reply to the bind-
ing update with a Binding Acknowledgment (7).

A very optimistic MN which is located in a known applied ingress filtering sub-net
may starts using its new care-of address upon dispatching the (1) and (2) messages
without any delay latency (step 1 and 2 can run in parallel). An optimistic MN may
use its care-of address after dispatching the standard binding update (step 6). In fact,
the optimistic MN can use its new care-of address about one round-trip time sooner
than with standard binding updates. A conservative MN uses its care-of address upon
receiving the Binding Acknowledgement (step 7).

We should consider that VEBU for the non-global ingress filtering networks area
works like “route optimization” or EBU mode from delay latency point of view.

4.1 Different Location Management Scenarios

For the case of global ingress filtering network area, there is no more need for the
standard binding update. In fact, the correspondent will respond to the VEBU only in
direct path with a VEBUA, which has only the MN nonce index and nothing more.

If ingress filtering is not applied globally over the network, the following scenarios
should be considered as follow:

156 A. Malekpour, D. Tavangarian, and R. Daher

A. Mobile Node Locates in Its Home Network
When a MN is located in its home subnet instead of sending two messages, it only
sends a VEBU, which uses its home address as its source address and the rests are the
same as the mentioned steps. The correspondent forms and sends a VEBUA towards
the MN home address. This message carries the correspondent keygen token and its
related nonce index.

B. Mobile Node Moves to a Foreign Network
For the ongoing session (i.e. started in home network) the MN goes through the 7
mentioned steps only instead of MN’s keygen token, it uses the received correspon-
dent’s keygen token (i.e. received at home) and the rest is the same as before. On the
other side, for the started sessions (i.e. started in a foreign network), the process com-
pletely runs the same as the mentioned seven steps.

5 Very Early Binding Update Advantages

This section tries to show the benefits of our communication mode, VEBU, compared
to the other communication modes:

1) The new care-of address can be used immediately after sending the (1) and (2)
approximately without any delay even for the start of a session (see Fig. 2.). If ingress
filtering is not deployed in general, VEBU and EBU have same delay latency but
VEBU supports for better security.

2) Mobility messages are reduced in mobile node wireless network:

Route optimization messages = 2 (home registration) + 4 (return routability) + 2 (binding
update) = 8 messages
Very Early Binding Update messages = 1 (home registration) + 2 (very early binding up-
date/acknowledgement) + 2(standard binding update) = 5 messages

It is noticeable that in case of ingress filtering, only the first four steps are needed.
Therefore, VEBU reduced the mobility messages to less than half (3 messages).

3) VEBU has integrated its mobility messages by means of sending two dependent
messages in two paths that one of them is protected by IPsec. This forces the attacker
to sniff both messages in both paths to launch any sort of attack. Since one of the
paths between the MN and its HA is protected by IPsec; therefore, sniffing these mes-
sages are not possible. In fact, the attacker cannot fool a MN by sniffing the mobility
messages in wireless link and reply them instead of the CN. This attack is one of the
possible attacks against MN in route optimization mode which can disrupt the MN
communication.

4) If ingress filtering can not be applied on the whole internet; the VEBU at least
can be one of the best choices for the mobility under the administrative domains
which ingress filtering is applied for all its sub-domains hierarchical.

6 Analysis According to the Round-Trip Time (RTT)

Since the behaviour of the VEBU strongly depends on the ingress filtering, VEBU
will be discussed in two parts:

 Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management 157

1) Ingress filtering area: An optimistic MN can use its new care-of address imme-
diately after the dispatching of the VEBU message and home registration message. In
this case, there is no delay latency after the each handover. However, a conservative
MN can use its new care-of address upon the receiving of VEBUA. Therefore, even
for a conservative MN, VEBU reduced at least one RTT.

2) Non-ingress filtering area: a very optimistic MN can use its new care-of address
immediately after the dispatching of the VEBU message and home registration mes-
sage. An optimistic MN can use its new care-of address upon dispatching the standard
binding update which needs the below average RTT (“_” symbol shows the path be-
tween two parties):

Max (RTT of MN_HA_CN, RTT of MN_CN) RTT of MN_HA_CN

A conservative MN can use its new care-of address upon the receipt of the standard
binding acknowledgement. In this case, the delay latency is the same as route
optimization:

Max (RTT of MN_HA_CN, RTT of MN_CN) + RTT of MN_CN

As a conclusion, this mode has the least delay latency compared with the route opti-
mization and all its enhanced communication modes for the applied global ingress
filtering scenarios.

7 Conclusion

The RFC 3775 has suggested the bidirectional-tunneling and route optimization
modes. These modes are not applicable for all application scenarios especially for
real-time scenarios. This paper has suggested a communication mode that minimized
the delay latency of mobility in IPv6 layer. VEBU mode basically depends on ingress
filtering. Many of the current networks have already applied the ingress filtering.
Anyway, if ingress filtering is not globally applied, this mode needs to precisely de-
fine the life-time of TBCE on the CN. Since the TBCE plays the same role in VEBU
and EBU, therefore, any solution for the TBCE can be applied here in VEBU.

Sniffing the mobility messages on the wireless subnets in VEBU mode, has no use
for the attackers, because the mobility messages on wireless subnet are integrated
with the mobility messages on the secured path to the HA.

References

1. Perkins, C., Ed., “IP Mobility Support for IPv4”, RFC 3344, August 2002.
2. Johnson, D., Perkins, C. and J. Arkko, “Mobility Support in IPv6”, RFC 3775, June 2004.
3. Deering, S. and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”, RFC 2460,

December 1998.
4. Arkko, J., Devarapalli, V. and F. Dupont, “Using IPsec to Protect Mobile IPv6 Signaling

Between Mobile Nodes and Home Agents”, RFC 3776, June 2004.
5. Soliman, H., Castelluccia, C., El Malki, K. and L. ellier, “Hierarchical Mobile IPv6 mobil-

ity management (HMIPv6)”, draft-ietf-mipshop-hmipv6-04.txt (work in progress),
December 2005.

158 A. Malekpour, D. Tavangarian, and R. Daher

6. Koodli, R., Editor, “Fast Handovers for Mobile IPv6”, draft-ietf-mipshop-fast-mipv6-
03.txt, October 2004.

7. International Telecommunication Union, Telecommunication Standardization sector,
SSG – LS 2 – E, San Diego, 9–11 August 2004

8. Nikander, P., Arkko, J., Aura, T., Montenegro, G. and E. Nordmark, “Mobile IP version 6
Route Optimization Security Design Background”, Internet-Draft draft-ietf-mip6-ro-sec
(work in progress).

9. Helsinki University of Technology “Binding Update Backhauling” draft-haddad-mip6-
cga-bub-00, April 2004

10. Krawczyk, H., “SIGMA: the ‘SIGn-and-MAC’ Approach to Authenticated Diffie-Hellman
and its use in the IKE protocol”, Advanced in Cryptography – CRYPTO 2003

11. Christian Vogt, Tobias Kuefner, Roland Bless, Mark Doll, University of Karlsruhe, Early
Binding Update, Draft-vogt-mipv6-early-binding-updates-00, February 2004

12. Charles E. Perkins, IETF Mobile IP Working Group, “Preconfigured Binding Management
Keys for Mobile IPv6”, draft-ietf-mip6-precfgKbm-00.txt, 5 April 2004

13. Nikander, P., Arkko, J., Aura, T., Montenegro, G. and E. Nordmark, “Mobile IP version 6
Route Optimization Security Design Background”, Internet-Draft draft-ietf-mip6-ro-sec
(work in progress)

14. ITU-T Y.1541 Network Performance Objectives for IP Based Services
15. Paul Ferguson and Daniel Senie. Network ingress filtering: Defeating denial of service at-

tacks which employ IP source address spoofing. RFC 2827, IETF Network Working
Group, May 2000.

16. Vogt, C. and J. Arkko, “Credit-Based Authorization for Mobile IPv6 Early Binding Up-
dates”, Internet-Draft draft-vogt-mobopts-credit-based-authorization (work in progress).

Compositional Constraints Generation for
Concurrent Real-Time Loops with

Interdependent Iterations�

I. Assayad and S. Yovine

Verimag, Centre Equation, 2 av. de Vignate, 38610 Gieres, France
{Ismail.Assayad, Sergio.Yovine}@imag.fr

Abstract. In this paper we describe an assume/guarantee based exe-
cution constraints synthesis algorithm for concurrent threads executing
on parallel platforms. Threads are loops which can have several control
points, such as the activation of loop iterations and the interaction with
other threads. Real-time applications such as multimedia applications are
usually specified using this kind of concurrent interacting threads. The
proposed compositional algorithm outputs a set of sufficient constraints
on the control points in order to meet timing objectives. The paper first
presents the timed system model we use to specify such applications.
Then, the constraints synthesis algorithm is presented and illustrated on
a real-time video application.

Keywords: Execution constraints synthesis, Compositionality, Concur-
rent loops.

1 Introduction

Embedded systems design is being strongly driven by software, which is becoming
a dominant part of embedded systems. This trend is leading to a significant grow
in the workload of embedded processors as software gradually shifts towards
an increasing computational complexity, requiring the execution of tasks such
as image, audio, and video compression and recognition. Indeed, it has been
observed that the increase of computational requirements is difficult to meet by
processor development alone.

Multiprocessor architectures are an appealing hardware solution to provide
high computational power at low-cost, compared to single-processor architec-
tures which are becoming too costly in terms of power consumption, time-to-
market and design complexity [1].

Moreover, there is a trend towards heterogeneous multiprocessor architectures
integrating multiple processor cores, and other specialiazed hardware compo-
nents on a single chip.

Besides, embedded software programming tends to use parallel programming,
both because applications are composed of intrinsically concurrent tasks and to
� Partially funded by MEDEA+ project NEVA.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 159–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 I. Assayad and S. Yovine

better exploit at software-level the physical parallelism provided by multiproces-
sor hardware [2].

The increasingly complex hardware and software interactions bring in ad-
ditinal challenges when it comes to meet non-functional constraints concerning
timing, memory, energy, Thus, building correct parallel real-time embedded
systems is an extremly complex activity. The grand challenge consists in synthe-
sizing correct-by-construction parallel code that complies with the non-functional
requirements of the application and constraints of the hardware architecture.

One of the key issues here is scheduling. There is a broad litterature on
scheduling real-time systems, in particular the well established theory devel-
oped after RMA [3]. Synthesizing a scheduler consists in assigning priorities to
tasks. There are today available commercial tools which are used in several ap-
plication domains such as automotive and avionics. An inconvenience of such
theory which weakens its usability for heterogeneous systems, is that each new
class of models requires developing a new analysis technique.

Another approach consists in viewing scheduling analysis as a flow-analysis
problem for event streams [4, 5, 6]. This approach handles heterogeneous compo-
nents which interact, but it is mostly focused on system-level scheduling, and it
is not amenable to synthesis.

Existing work deals essentially with either (1) the problem of the sechedule
length optimisation of a data flow DAG describing the body of a cyclic process,
(2) the problem of scheduling non interacting real-time loops or either (3) parallel
interacting tasks without explicit deadlines constraints [7]. These process models
are restrictive because they do not address the standard process model used in
real-time systems, namely, the concurrent cyclic processes model. A few work
has been done in this direction for the parallel execution of loops. In [8], the
authors used a set of prerequisite constraints similar to the ones computed by
our constraints generator algorithm, and produced memory efficient or run-time
constraints derivation algorithms.

An alternative approach to handle heterogeneity consists in using timed au-
tomata, and applying algorithmic controller-synthesis techniques to construct
a taylor-made scheduler [9]. This allows taking into account complex depen-
dencies and interactions, as well as the control and observation points of the
applications. It also allows compositional reasoning to both ease integration of
components and schedulers. The major drawback of this approach is complexity.
Though there are some techniques to alliviate this issue, they are either focused
on modelling issues [10], or restricted to monoprocessor architectures [11].

In this paper, we compute a sufficient execution constraints for each thread
separately but taking into account its environment composed of the other
threads which interfer with its execution. For this purpose we give in this pa-
per an assume/guarantee rule to synthesize the set of the constraints of a sys-
tem of concurrent threads subject to real-time constraints in a compositional
way. This compositional reasonning owes its attractiveness to its application to
parallel composition, since it replaces operational reasoning, with a complexity
increasing exponentially in the number of parallel components, by reasoning

Compositional Constraints Generation for Concurrent Real-Time Loops 161

compositionally on the basis of given specifications. The complexity of this way
of reasoning increases linearly only w.r.t. the number of those specifications.

The constraints generated by our algorithm can be used, for instance, to
implement a scheduler of a parallel system composed of concurrent processes
subject to explicit timing constraints, or to determine if two or more real-time
applications can be composed together in a safe manner w.r.t. their timing and
bandwidth usage constraints.

The paper is structured as follows. We present our model in section 2 and
controller-synthesis algorithm in section 3. In section 4 we apply our approach
on a real-time industrial application.

2 Model

Hereafter we introduce some definitions and notations that will be necessary for
understanding the following sections.

2.1 Syntax and Definitions

Iterations Control. We note bq the start time of a state q and eq its finish time.
Also, for a set of valuations X we note C(X) the set of constraints containing
elements from X . We also note τc and τu and the set of controllable and
uncontrollable transitions respectively and we note τ = τc ∪ τu the set of all
transitions. Each thread is a loop. Each loop has two distinguished states, called
first and last. The next iteration can either begin its execuction immediately
after the termination of the current one or a laps of time later. In the first case,
the thread goes from the state last to the state first without idling. In the
second case, the scheduler delays the execution of the iteration. We say that
the transition last → first is controllable, i.e., last → first ∈ τc. Depending on
the iteration activation control mechanism, the threads can be periodic, i.e., iter-
ations are periodically fired, or sporadic, i.e., the execution of the next iteration
begins a laps of time after the finish time of the preceeding iteration.

Dependencies. For a computation q in the thread loop body, we note (q, i) the ith
instance of q, that is the instance of q executed in the ith iteration. For two com-
putations q and r we note (r, j) → (q, i) the precedence dependency between the
computation instance of r in the iteration j and the computation instance of q in
the iteration i. By default, if no instance index is given then the depen-
dency concerns computations instances of the same iteration number. That is:

r → q ⇐⇒ ∀k ≥ 1 (r, k) → (q, k)

An execution of the thread must respect this dependency relation between com-
putations: the execution of a computation instance (q, i) can begin only after the
end of all its predecessors. We note Prd((q, i)) the set of computations instances
belonging to the other threads, i.e., threads other than the q one, and preceeding

162 I. Assayad and S. Yovine

(q, i). We also note bq
i , eq

i and δq respectively, the start time, the end time and
the execution duration respectively of (q, i). We thus have:

eq
i = bq

i + max
(r,j)∈Prd((q,i))

wrq
ji + δq + εi

where wrq
ji is the waiting time due to the precedence relation (r, j) → (q, i),

and εi ≥ 0 is either null, when the transition t leading to q on the thread is
uncontrollable (i.e. t ∈ τu), or a positive number according to the restriction
of t by the scheduler, when the transition is controllable (i.e. t ∈ τc). Finally,
we note σq

i the relative end time of the computation (q, i) (compared to the
iteration firing time).

Thread. The behavior of a thread is modelled by an automaton A, where A is a
tuple (QA, EA, dA, τA) s.t.:

– QA = {q0, q1, . . . , qn} is the set of the control states of the automaton A
representing the thread computations,

– EA : QA → N is the function which associates execution times to states:
EA(qj) = δqj , where δqj is the execution time of qj ,

– dA is the execution time deadline of the thread iteration,
– τA = τc ∪ τu is the set of controllable and uncontrollable transitions.

System. A system is a tuple (A1, . . . , Ar, Dep) of Ai, i ∈ [1, r] automata, each
one modelling the behavior of a thread, and Dep, a set of dependencies between
states instances.

2.2 Semantics

Let the parallel composition of r threads A1 ‖ A2 ‖ . . . ‖ Ar.

System States. For each automaton A, we note SA : N → R
2.|QA| the state of

A where SA(i) is the vector 〈bq1
i , bq2

i , . . . , bqk

i , eq1
i , eq2

i , . . . , eqk

i 〉 of state (q1, . . . , qk

valuations) valuations of the ith-iteration. In the same way, we denote the
system A1 ‖ . . . ‖ Ar state by a function SA1...Ar : N → R

2. r
i=1 |QA|, where

the image SA1...Ar (i) of the ith-iteration is the vector 〈SA1(i), . . . SAr(i)〉. A
component SAj(i) denotes the state of an automaton Aj , explained above, at the
ith-iteration. For instance, the initial state, S0

A1,...,Ar
is:

S0
‖jAj

(qk) = 〈⊥, ⊥〉i,j∀k > 0

S0
‖jAj

(q0) = 〈bqi

Aj
, eqi

Aj
〉i,j

where bq0
Aj

= tj0, 1 ≤ j ≤ r, and all the other valuations are equal to ⊥. For
simplicity, we noted bqi

Aj
and eqi

Aj
the start time and the end time of the state qi

of Aj for first iteration (number 0).

Compositional Constraints Generation for Concurrent Real-Time Loops 163

System Transitions. The semantics of the transition l
(A,q,k)−−−−→ l′ is:

1. q → q′ is a transition of the automaton A.
2. ∀(p, k′) ∈ Prd((q, k)) ep

k′ �=⊥, that is q can terminate only if each of its
predecessors p has already terminated.

3. bq′
k = eq

k = bq
k + wq

k + δq with δq ∈ N is the execution time of q and wq
k is the

waiting time due to the dependencies (p, k′) → (q, k), (p, k′) ∈ Prd((q, k))
that is:

wq
k = max

(p,k′)∈Prd((q,k))
wpq

k′k

wpq
k′k =

{
0 if ep

k′ − bq
k < 0

ep
k − bq

k

= max{0, ep
k′ − bq

k}
wpq

k′k is the waiting time due to (p, k′) → (q, k)

4. If the transition l
(A,q,i)−−−−→ l′ corresponds to the activation of a new iteration,

that is the transition last(A) → first(A) we have:

elast
k = blast

k + wlast
k + δlast

bfirst
k+1 = bfirst

k + p [if A is periodic]

bfirst
k+1 = elast

k + ε, ε ≥ 0 [if A is sporadic]

wk is defined as previously according to the dependencies and δlast ∈ N is
the execution time of the state last.

System Executions. An execution of the system is an infinite sequence ρ s.t.
ρ = S0S1S2 . . . where for each k, Sk → Sk+1 is a transition of the system. We
note Execs the set of all execution sequences for all possible initial states.

Good System Executions. We say that Sk is good if for all n and for all automa-
ton A

(
e

last(A)
n − b

first(A)
n ≤ dA ∨ e

last(A)
n =⊥

)
is true. We say that a sequence

ρ = S0S1S2 . . . is good if Sk is good for all k. Finally, We note Execs′ the sub-set
of Execs composed of good system execution sequences.

3 Constraints Synthesis

3.1 Outline of the Approach

Constraints Synthesis Problem. We consider r threads A1, . . . , Ar. We are in-
terested in the two following constraints synthesis problems categories for the
system A1 ‖ . . . ‖ Ar:

1. for each automaton Aj and iteration index i, Find tij s.t.
E ⊆ Execs′, where:
E = {ρ ∈ Execs/∀(j, S, i)bfirst(Aj)

i (S) = tij}

164 I. Assayad and S. Yovine

cd1

¯cd1
q1

q4

eq4 − bq1 ≤ dQ

(i, i)

(i, i)

(i, i)
q2

q3

bq1 bp1

p3

p2

p1

ep3 − bp1 ≤ dP

AQ
AP

Fig. 1. Concurrent automata AP and AQ

C

(k,k)

(k+2,k)

(k,k)
A B

D E

(k+1,k) (k+1,k)
(k+1,k)

P1 processor

(k,k)

(k,k)
eA

k − bA
k ≤ p

bA
k

bC
k

eC
k − bC

k ≤ p

bE
kbD

k

eD
k − bD

k ≤ p

bB
k

eB
k − bB

k ≤ p

eE
k − bD

k ≤ p

Fig. 2. Timed system model of the video sub-system

2. for the periodic automata case, find Sinit s.t.
E ⊆ Execs′, where:
E = {ρ ∈ Execs/S0 = Sinit}

In the next sections we will describe the synthesis algorithm and give two ex-
amples: the problem of example of figure 1 falls into category (1) mentionned
above, and the problem of application of figure 2 falls into category (2).

Outline of the Algorithm. For an automaton A and a constraint φ We define A/φ
as the behaviour of A constrained by φ, that is, the set of executions of A that

Compositional Constraints Generation for Concurrent Real-Time Loops 165

satisfy φ. We also note Env(A), the environment of A, i.e., the set of automata
which are in interaction with A by means of precedence dependencies, storage
sharing constraints or computation resources sharing constraints. The synthesis
algorithm is based on the following assume/guarantee kind-of rule.

For all i:

(1) ∅ �= Ai/Ψi(w) ⊆ good(Ai),
(2) (Ai/Ψi(w))||(Env(Ai)/Φi(b, w)) �= ∅
(3) Δi = ∀w.(Ψi ⇒ Φi)

(4) ||iAi/Δi ⊆ good(‖i Ai)

Where good(Ai) is the set of good executions of Ai, and good(‖i Ai) is the set
of good system executions (see section 2.2).

(1) means that Ψi(w) characterizes a non-empty subset of good executions of Ai;
(2) means that Φi(b, w) characterizes a set of begin times of threads interacting

with Ai that are consistent with the subset of good execs of Ai;
(3) we should note here that w’s are determined by b’s, because execution times

are fixed.

It remains to find an assignment of b’s that makes (4) non-empty.
So, the synthesis algorithm consists in finding Ψi and Φi.

3.2 Synthesis

We consider an automaton Ai inside a system composed of several concurrent
loops. Before presenting the synthesis algorithm, we describe in the following the
three main steps in the synthesis of the constraints Δi. We use the two automata
AP and AQ depicted in the figure 1 to illustrate the technique.

Computing Ψi. This step computes a set of constraints noted Wi on the waiting
times variables, i.e. 〈w〉, for each automaton separately, of the form Xi ⇐ Wi∧Ii

where Xi is the result of the backward constraints propagation on the automaton
Ai starting from the last state, Wi is the constraint on the waiting times variables
〈w〉 of Ai and Ii is an invariant of Ai. Notice that Wi contains only 〈w〉 variables.
The Ii formula may contain the waiting times valuations, i.e., 〈w〉, the start
and the end time valuations 〈b, e〉. The computation of XP , WP and IP for the
automaton AP are explained in table 1. AP has no conditional branch. Thus, WP

is the sufficient and necessary condition on waiting times, i.e., Xp ⇔ WP ∧ IP ,
Notice that in the example of table 1, b’s and e’s variables are contained in σ’s
(in deed, σ is the relative end time, see section 2.1). For lack of space, the details
of the constraints propagation process are not given for AQ.

Computing Φi. It’s a relation which links uncontrollable variables, i.e,. the wait-
ing times 〈w〉 of Ai, and control points, i.e., the activation times bfirst(Ai) and
〈bfirst(Ak)〉k∈Env(Ai) of Ai and its environment. This relation characterizes the

166 I. Assayad and S. Yovine

Table 1. Details of the constraints propagation process on P

Constraints propagation on P:

XP ≡ ∧
(σp3 ≤ dP ∧ σp3 = σp2 + δp3 + wp3)
(σp2 ≤ dP − δp3 − wp3 ∧ σp2 = σp1 + δp2)
(σp1 ≤ dP − δp3 − wp3 − δp2 ∧ σp1 = δp3)

XP can be expressed as a conjunction of an invariant
of P, IP , and a constraint on w’s, WP , as follows:

XP ≡ (σp1 ≤ dP − δp3 − wp3 − δp2) ∧ IP

≡ (wp3 ≤ dP − δp3 − δp2 − δp1) ∧ IP

IP ≡ ∧
(σp3 = σp2 + δp3 + wp3)
(σp2 = σp1 + δp2)
(σp1 = δp3)

WP ≡ (wp3 ≤ dP − δp3 − δp2 − δp1)

Finally, we obtain ΨP . Notice that since P does not
contain a branch, WP is a necessary and sufficient
property on w’s, that is, no need to compute the
weakest precondition:

XP ⇔ WP ∧ IP = ΨP

possible interactions of Ai with Env(Ai). Several interactions may, in deed, exist
since these automata can have conditional branchs. For instance, AQ has two
execution paths corresponding to the conditions cond1 = cd1 and cond2 = cd1.
This causes two possible interactions of AP with AQ, that is, Φcond1

Q (wq2 , bq1 , bp1)
when cond1 is true and Φcond2

Q (wq3 , wq2 , bq1 , bp1) when cond2 is true, and two
interactions of AP with AQ, that is, Φcond1

P (wp3 , bq1 , bp1) when cond1 is true
and Φcond2

P (wp3 , bq1 , bp1) when cond2 is true. For a given interaction , Φ
condj

i is
computed as follows: for each state (q, i) = (qk0 , i) of the automaton A ver-
ifying (1) (q, i) belongs to the domain of definition of the function Prd (see
section 2.1), and (2) (q, i) is executed when condj holds; we compute φ(w(q,i)),
by using: w(q,i) = max

(q′,j)∈Prd((q,i))
w(q′,j)→(q,i) where for each w(q′,j)→(q,i) the fol-

lowing relation holds:

∨

(
∧

(
σ(q′,j) + b

first(A)
i > σ(q,i) + b

first(A′)
j

)
(
w(q′,j)→(q,i) = 0

)
)

⎛
⎜⎜⎜⎜⎝∧

(
σ(q′,j) + b

first(A)
i ≤ σ(q,i) + b

first(A′)
j

)
⎛
⎜⎝

w(q′,j)→(q,i) = σ(q,i) − σ(q′,j)

+ b
first(A′)
j

− b
first(A)
i

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

Compositional Constraints Generation for Concurrent Real-Time Loops 167

Table 2. Interactions of P with Q

Sub-interactions of P with Q when the branch condition cd1 holds:

Φ
cd1

P ≡

„
∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)
(πq1p1 + σq4 ≥ σp2 ∧ wp3 = −πq1p1 + δq1 + δq2 + δq4 + wq2 − δp1 − δp2)

«

≡

0
@∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)
(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp2 ∧ wp3 = −πq1p1 + δq1 + δq2 + δq4 − δp1 − δp2)
(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp2 ∧ wp3 = δq2 + δq4)

1
A

Sub-interactions of P with Q when cd1 is false:

Φ
cd1

P ≡

„
∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)
(πq1p1 + σq4 ≥ σp2 ∧ wp3 = −πq1p1 +

P
i
δqi + wq3 + wq2 − δp1 − δp2)

«

≡

0
BBBB@∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)
(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp1 ∧ πq1p1 + σq3 > σp2 ∧ wp3 = −πq1p1 +

P
i
δqi − δp1 − δp2)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp1 ∧ πq1p1 + σq3 > σp2 ∧ wp3 = δq2 + δq3 + δq4 − δp2)
(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp1 ∧ πq1p1 + σq3 ≤ σp2 ∧ wp3 = δq2 + δq4)
(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp1 ∧ πq1p1 + σq3 ≤ σp2 ∧ wp3 = πq1p1 − δq1 + δq2 + δq4 + δp1)

1
CCCCA

Table 3. Interactions of Q with P

Sub-interactions of Q with P when the branch condition cd1 holds:

Φcd1
Q ≡ ∨ (πq1p1 + σq1 > σp2 ∧ wq2 = 0)

(πq1p1 + σq1 ≤ σp2 ∧ wq2 = πq1p1 + δp1 + δp2 − δq1)

Sub-interactions of Q with P when cd1 is false:

Φcd1
Q ≡ ∧

∨ (πq1p1 + σq3 > σp2 ∧ wq2 = 0)
(πq1p1 + σq3 ≤ σp2 ∧ wq2 = πq1p1 + δp1 + δp2 − δq1 − δq3 − wq3)

∨ (πq1p1 + σq1 > σp1 ∧ wq3 = 0)
(πq1p1 + σq1 ≤ σp1 ∧ wq3 = πq1p1 + δp1 − δq1)

In the relation above, A′ is the automaton to which (q′, j) belongs and σ(q,i)is
the relative end time of (q, i) compared to the firing time of iteration number i,
under the condition condj . The expression of wqi may moreover contain some
unknown waiting times variables wqk

, k < i, in which case they are recursively
computed in function of the appropriate control points of Env(A) under condj .
Finally, Φi =

∨
j Φ

condj

i . The details of this calculation process are illustrated on

the example of figure 1: the relations Φcd1
P , Φcd1

P , Φcd1
Q and Φcd1

Q are given in table 2

and table 3 respectively, where the symbol πq1p1 notes bq1 −bp1 , ΦP = Φcd1
P ∨Φcd1

P

and ΦQ = Φcd1
Q ∨ Φcd1

Q .

The Execution Constraints. The set of execution constraints of the automaton
Ai, named Δi(bfirst(Ai), 〈bfirst(Aj)〉j∈Env(Ai)), is obtained by mean of quantifiers
elimination:

Δi = ∀w
(
Φi(〈w〉, 〈bfirst(Ak)〉) ⇒ Ψi(〈w〉)

)

168 I. Assayad and S. Yovine

On the example of AP and AQ where we considered unit execution times for
the threads computations: δqi = 1 for all i, and the same execution deadlines:
dP = dQ = 10, the algorithm generates the two constraints ΔQ ≡ (bq1 +2 ≥ bp1)
and ΔP ≡ (bp1 + 5 ≥ bq1) for P and Q respectively.

4 Application

In this section we illustrate our algorithm on a video sub-system application
whose timed model is given in figure 2. Each of the tasks A, B, C, D and E is a
periodic process. The tasks have the same period and are subject to the following
non-functional constraints: memory buffers capacities, deadlines, computation
resources sharing.

Synthesis. Hereafter we apply our synthesis algorithm to compute the schedul-
ing constraints for this model. We compute then compose each thread execution
constraints to obtain the system constraints. We give below the result of each
step of the algorithm for each of the loops A, B, C, D and E.

(1) Computing Ψi. This step gives the following constraints on waiting times
variables:

Ψe = (we ≤ p − δe)
Ψd = (wd ≤ p − δd)
Ψc = (wc ≤ p − δc)
Ψb = (wb ≤ p − δb)
Ψa = (δa ≤ p)

(2) Computing Φi. For each loop, we compute the interaction with its en-
vironment. Firstly, storage resources sharing constraints due to input/output
buffers capacities are expressed in B:

Bd = (δe + be − bd ≤ 2p) (buffer1 & buffer2)
Ba = (δb + bb − ba ≤ p) (b buffer1)

Bb =
(

∧ δd + bd − bb ≤ p (b buffer2)
δc + bc − bb ≤ p (b buffer2)

)

Second, computation resources sharing constraints are expressed in M. By
taking into account the periodicity property of the loops, we obtain the Me and
Md formula.

M =
(

∨ δe + pe ≤ pd + p
pe ≥ pd + δd + p

)
Finally, the precedence constraints are given in D:

Dd = bd − be + δd ≤ 0 ∧ we = 0
Dc = bb − bc + δb ≤ 0 ∧ wc = 0
Dd = bb − bd + δb ≤ 0 ∧ wd = 0
Db = ba − bb + δa ≤ 0 ∧ wb = 0

Φx = Bx ∧ M ∧ Dx for each x ∈ {a, b, c, d, e}

Compositional Constraints Generation for Concurrent Real-Time Loops 169

(3) The system constraints is thus Δ, the conjunction of each of the
threads constraints:

Δ = Δb ∧ Δc ∧ Δd ∧ Δe

For the following execution times data values

δa =
1
30

, δb =
1
30

, δc =
1
30

, δd =
1
60

, δe =
1
60

and a real-time processing constraint of p = 1
15 , we synthesized:

Δb ≡ (bb = ba + 1
30)

Δc ≡ (bc = bb + 1
30)

Δd ≡ (bd = bb + 1
30)

Δe ≡
(

∨ ((be ≥ bd + 1
60) ∧ (be ≤ bd + 1

20))
((be ≥ bd + 5

60) ∧ (be ≤ bd + 7
60))

)

5 Conclusion

We have described a constraints synthesis algorithm for the parallel composition
of timed automata modelling concurrent threads. The threads are subject to
real-time constraints. This algorithm uses the compositionality approach. It is
based on the assume/guarantee paradigm to synthesize a constraints set for each
of the threads separately taking into account the interference of its environment.
We illustrated the algorithm on an industrial real-time application composed of
five interdependent concurrent real-time threads.

The constraints generated by our algorithm can be used, for instance, to
implement the scheduler of a parallel system composed of concurrent processes,
or to determine if two or more real-time applications can be composed safely
together w.r.t. their timing and bandwidth usage constraints.

Current theoretical work concerns extending the approach to handle non-
deterministic execution times.

References

1. Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A single-chip multipro-
cessor. Computer, 30(9), 1997.

2. Manfred Schlett. Trends in embedded-microprocessor design. IEEE Computer,
31(8):44–49, 1998.

3. Giorgio Buttazzo C. Hard Real-Time Computing Systems Predictable Scheduling
Algorithms and Applications, volume 23 of Real-Time Systems Series. Springer,
2nd edition, 2005.

4. K. Gresser. An event model for deadline verification of hard real-time systems. In
Proceedings 5th Euromicro Workshop on Real-Time Systems, pages 118–123, Oulu,
Finland, 1993.

5. Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for
scheduling hard real-time systems. In In Proceedings International Symposium on
Circuits and Systems (ISCAS), Geneva, Switzerland, 2000.

170 I. Assayad and S. Yovine

6. Kai Richter, Razvan Racu, and Rolf Ernst. Scheduling analysis integration for
heterogeneous multiprocessor soc. Technical report, Institute of Computer and
Communication Network Engineering, Technical University of Braunschweig, 2003.

7. A. Siebenborn, O. Bringmann, and W. Rosenstiel. Worst-case performance analysis
of parallel, communicating software processes. In CODES’02, pages 37–42, May
2002.

8. A. van der Werf, J.L. van Meerbergen, E.H.L. Aarts, W.F.J. Verhaegh, , and P.E.R.
Lippens. Efficient timing constraint derivation for optimally retiming high speed
processing units. In the 7th International Symposium on High-Level Synthesis,
pages 48–53, May 1994.

9. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STAC’95, volume 900 of LNCS. Springer Verlag, 1995.

10. K. Altisen, G. Goessler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, Special Issue on Control Ap-
proaches to Real-time, 20:55–84, 2002.

11. Ch. Kloukinas and S. Yovine. Synthesis of Safe, QoS Extendible, Application
Specific Schedulers for Heterogeneous Real-Time Systems. In Proceedings of 5th
Euromicro Conference on Real-Time Systems (ECRTS’03), Porto, Portugal, July
2003, pages 253–267, Porto, Portuga, July 2003.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 171 – 180, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Application Signaling Protocols as Basis for QoS
in IP-Based Wireless Networks

Robil Daher, Djamshid Tavangarian, and Abbas Malekpour

Chair for Computer Architecture, Institute of Computer Science,
University of Rostock, Albert-Einstein-Str. 21,

18059 Rostock, Germany
firstname.surname@uni-rostock.de

Abstract. The wireless resources such as bandwidth in case of wireless
networks (WNs) are very restricted compared with wired networks. Thus, provid-
ing integrated service for WNs could lead to high traffic and instable performance
because of the high link error. However, some application signaling protocols
transport information about their resource requirements; this information is simi-
lar to that transported by QoS-signaling protocol. The usage of these application
signaling protocols to perform a kind of QoS can reduce the control traffic gener-
ated on the wireless side effectively. In this respect, new structure of QoS is pre-
sented, where a wireless access server (WAS) communicates with the applications
server, and the base stations in order to provide a kind of QoS. This method is ap-
plied on SIP-based WLAN telephony. The experiments on our implemented soft-
ware presented relatively small delay times, in average: 13 ms for flow reserva-
tion and 16 ms for updating the wireless state in WAS. This provides an effective
structure of QoS for VoIP applications.

Keywords: Application Signaling Protocol, IP-based Wireless Networks, Qual-
ity of Service, SIP, Telephony, WLAN.

1 Introduction

The technical advance of wireless networks (WNs) and their applications recently
creates a revolution in the mobility, where the mobile internet access is worldwide
growing drastically [6]. However, while the wide area WNs such as GPRS and 3G
have concentrated on voice traffic more than data traffic, the IP-based WNs such as
WLAN are basically built for data traffic [1], which causes many drawbacks for ap-
plying real time traffic in such WNs. Therefore, the Quality of Service (QoS) forms
an essential factor for developing this kind of WN’s technology.

However, due to the fact that WN resources on the wireless side, such as band-
width, are very restricted compared with the wired side, a mechanism for Resource
Reservation and Admission Control (RRAC) is definitely required in order to control
and manage the congestions effectively. Thus, providing service differentiation in
such WNs is insufficient for QoS [4], [12], whereas providing service integration can
avoid the severe performance degradation under high traffic load via an admission
control.

172 R. Daher, D. Tavangarian, and A. Malekpour

The MAC-based solutions for RRAC provide an effective structure with minimal
signalling traffic on the wireless side [4]; however, such solutions are designed for
uni-cell mode RRAC [7], where resources are reserved only for flows inside the cell.
Furthermore, such solutions require the modification of the MAC-layer frame and
methods. The enhancement of these solutions to multi-cells mode RRAC, where re-
sources are reserved along the path between flow initiator and receiver, increases the
system’s complexity drastically. Moreover, a cross-layer interaction between MAC
and IP–layers is required to achieve the flow reservation in multi-cells mode [7].
Therefore, the IP-based solutions offer lower cost for applying RRAC in such WNs;
however, they generate more signalling traffic on the wireless side.

In other words, all known solutions that provide integrated service for WNs gener-
ate extra overhead according to their signalling traffic. This reduces the WN’s capac-
ity available for users, and affects the whole performance of WN.

On the other hand, by many client/server-based applications, especially the real
time application, the application signalling protocol carries information about the
required resources. For instance, in case of SIP-based VoIP application, information
about the resource requirements is integrated in the SDP-header of the SIP-message
[8]. This information, which includes codec type, codec bit rate and frame size, could
be used to calculate the required bandwidth [14]. However, similar information must
be sent again by the used IntServ signalling protocol, which reduces the performance
of the network. We think that the usage of such application signalling protocols in
WNs to provide resource requirement for IntServ-QoS instead of IntServ signaling
protocol will decrease the control overhead on wireless side without reducing the
provided QoS, and thus increase the performance of wireless access.

In this paper, we present the problem in details in section 2, and then introduce our
QoS-method in section 3. In section 4, we propose an application of our QoS-
mechanism on WLAN telephony using SIP protocol. Our experiments and results are
presented in section 5. Finally, we conclude this paper in section 6.

2 Traffic Issues of IntServ-QoS Signaling Protocol

In case of IntServ, the applications need to specify their required services from the
network; thus, a signaling protocol is used for indicating the application requirement
to network elements. This signaling protocol carries QoS-related information from the
end systems requesting QoS guarantees to network elements. The following steps are
typical for a QoS-signaling protocol [5]:

1. Application requests for resources;
2. Network element looks at required resources and unreserved resources;
3. Network element admits or rejects the request.

IntServe uses soft connection approach, where the connection state is maintained
only for a limited amount of time [5]. As long as the connection is active, the state
needs to be refreshed at regular intervals. This state refreshment produces extra traffic
in the network.

The Resource Reservation Protocol (RSVP) is designed to provide IntServ for
packet-switched networks such as WLAN and WiMAX. However, because of the

 Application Signaling Protocols as Basis for QoS in IP-Based Wireless Networks 173

restriction of bandwidth and high link error in WNs, directly applying the RSVP may
lead to high overhead and instable performance. This reduces the resources available
for users, and as a result degrades the whole performance.

Consequently, besides the signaling overhead generated by the application itself in
order to build and maintain a session, additional signaling overhead is generated by
IntServ signaling protocol in order to maintain certain QoS for this session. In other
words, the use of IntServ in WNs generates extra overhead in wireless medium ac-
cording to QoS-signaling traffic. This reduces the available WN’s capacity for users,
and degrades the whole performance and QoS of WN.

3 Application Signaling Protocols for Signaling QoS in WNs

In case many client/server-based applications, especially real-time applications, the
application signaling protocol through setting-up and managing a session carries in-
formation about the required resources from client to server, or through the server.
For instance, in SIP-based VoIP applications, building a session between user A and
B starts when A sends SIP-Invite-Message to B through the proxy. The SIP-Invite-
Message in its SDP-header contains information about the required resources of the
flow from A to B, such as codec type, codec bit rate, and frame size [8][14]. If B
accepts the session, it answers with SIP-Ok-Message, which similarly includes infor-
mation about the required resources of the flow from B to A. On the other hand, when
A, or B ends the session, it sends SIP-Bye-Message to the other user through the
proxy, in case of firewall-proxy. When any one of A or B changes its session parame-
ters, it informs the other through the proxy with the corresponded SIP-message [8].
The transferred information of resource requirement through the proxy relatively
match the information needed for per-flow reservation and admission control by Int-
Serv. However, InServ is appropriate for layer-3-based QoS, when the physical layer
offers stable performance expressed as bandwidth, delay, and packet loss, such in
some high bandwidth wired network like Ethernet.

On the other hand, the nature of the wireless medium causes high link error and in-
stable bandwidth by the wireless network. As a result of the mobility, the bit rate of
wireless link varies over the time according to the received signal strength [7]. There-
fore, the mobile stations (MSs) must reactivate their per-flow reservation dynamically
after each critical change of the achieved bandwidth in comparison to the reserved
bandwidth, or after any handoff process. This also requires cooperation with the
MAC-layer of the used wireless network.

Thus, when the required resources of the requested flow and the wireless state of
the desired connection between the corresponded MSs are known, the achieved band-
width between these MSs can be calculated. Consequently, the real load of each base
station (BS) as well as MS can be calculated and measured over the time. This helps
to detect and avoid overload cases of BSs, and as a result to organize the reservation
processes on each BS.

The use of Application Signaling Protocols for Signaling QoS (ASPSQ) in IP-
based WNs provides underlying structure to transport the application’s resource re-
quirements and flow reservation state to the wireless networks. On the other hand, the

174 R. Daher, D. Tavangarian, and A. Malekpour

wireless state of the participated MSs in a session must be separately obtained, as we
explain in the following subsections.

3.1 ASPSQ-System Architecture

To avoid using additional infrastructure on the wireless side that employs the wireless
resources, we concentrate on the wired side of the BS; a BS is the central point of a
cell, like the Access Point (AP) in case of IEEE 802.11 [1]. The BS builds a bridge
between the wired side and the wireless side; therefore, it can be used to observe the
bit rate variation of each wireless link on the physical layer.

In this paper, we present an approach that depends on moving the traffic generated
by QoS-mechanism from the wireless side to the wired side; this approach is built on
two main points:

1. Using each application signaling protocol to transport information about the re-
quested resources to an external server, called wireless access server (WAS).
WAS is a logical entity.

2. Checking the bandwidth on the wireless side periodically via the use of a logi-
cal entity called wireless links observer (WLO) that runs on each BS. WLO ob-
serves the associated MSs and their wireless links quality, and informs the
WAS about the current wireless links state periodically or after a critical
change. WLO sends this information as a links state message (LSM) to WAS.

Under the assumption that the bandwidth of the wired side is much higher than that
of the wireless side, the additional traffic generated on the wired side according to our
method could be tolerated.

This concept does not require any software or hardware modification on the
client’s side; clients of all supported application signaling protocols can be used in
this system.

3.2 Operations of ASPSQ-Mechanism

Each WLO informs the WAS about the wireless links state by sending a wireless state
message (WSM) to WAS periodically or after a critical change. WSM contains an IP-
table of all associated MSs to the corresponded BS, and additionally includes infor-
mation about the achieved bandwidth of each MS. The IP-table is used to resolve the
relationship “MS-to-BS” through building a session, so that WAS can decide the
admission control of the checked session on the stated BS.

Through ASPSQ-mechanism, a session of a determined application between two
MSs (X and Y) can be built according to the following steps, as illustrated in Fig.1
and Fig.2:

1. X sends a request to the application server according to the corresponded
signaling protocol;

2. Application server communicates with WAS over a proprietary protocol, and
transfers the flow 4-tuples: Server-ID (IP and Port-Nr.), Source-IP, destination-
IP, and the required bandwidth. The application server sends this information as
wireless access request (WAR). WAS responds according to the following
algorithm:

 Application Signaling Protocols as Basis for QoS in IP-Based Wireless Networks 175

Check X location; // resolution of relationship
 MS-to-cell
If the free capacity of X’s cell is greater than or
equaled to the required bandwidth
{Check Y location;

If the free capacity of Y’s cell is greater
than or equaled the required bandwidth
{
 response to application server with
 Ok/reserved
} else {
 response to application server with
 rejected (destination cell is busy)
}

} else {
 response to application server with
 rejected (source cell is busy)
}

3. Application server continues the session building if the WAS’s response is
“Ok”; otherwise the application server breaks the session and informs X over
the corresponded signaling protocol.

Fig. 1. Logical connections between network elements in an ASPSQ-system in a wireless network

In case X or Y belongs to a wired network, only MS that belongs to the wireless
network will be checked. When an MS changes its achieved bandwidth due to the
variation of transmission bit rate, the WLO informs WAS about the new state. The
WAS then commands the appropriate application server to change the session pa-
rameters of the corresponded session participants, or even to end this session.

In ASPSQ- mechanism there is no need for refreshing the flow reservations, be-
cause the application server according to the used application signaling protocol is
responsible for providing state information of the corresponded flows. Thus, no extra
traffic for purpose of refreshing flow reservations may be generated.

176 R. Daher, D. Tavangarian, and A. Malekpour

Fig. 2. Usage of SIP protocol as signaling protocol for QoS in WLAN telephony

4 QoS for SIP-Based WLAN Telephony

We apply our mechanism of QoS on the WLAN telephony, where the SIP protocol is
used as signaling protocol for this service.

SIP protocol currently becomes the most important protocol for IP-Telephony and
a basic signaling protocol for the 4G wireless network [13]. The central element of an
SIP-System is proxy server, which control and manages the sessions between the user
agents (UAs). This proxy server cooperates with two other servers: the registrar server
for registration of UAs, and the location server for resolution of URI-addresses into
IP-addresses [8]. The Figure 2.b shows the building process of an SIP session in rela-
tion to our QoS-mechanism.

WLAN consists of two main elements: AP as BS, and station (STA) as MS. In this
system, an WLO must run on each AP in order to check the list of associated STAs
and their links quality and bandwidth. WLO check the wireless links state periodi-
cally, each “ ” time interval. WLO sends this information to WAS through LSMs
generated periodically or after a critical change. Due to the transmission bit rate varia-
tion of WLAN, the medium busy time (MBT) should be used to express the load of
each AP as well as STAs [7].

 Application Signaling Protocols as Basis for QoS in IP-Based Wireless Networks 177

The communication between WLO and WAS, and between WAS and application
servers can be achieved over the Intelligent Management of Cell’s Access (IMCA)
protocol, which we developed in previous studies [3], [7] for load balancing and QoS
purposes in WLAN. However, the current version of IMCA must be enhanced with
few additional requests to integrate the functions of this QoS-mechanism. The IMCA
protocol is bit-based protocol and can be carried over UDP or TCP/IP. IMCA proto-
col supports the centralized architecture as well as the decentralized architecture [7].
In this study, we use the controller/server architecture, where an IMCA controller
(I-controller) runs on each AP and performs the functions of WLO. The IMCA server
(I-server) supports the WAS functionality. In the rest of this paper, we use the terms
I-server and I-controller to indicate WAS and WLO, respectively, unless explicitly
mentioned to the contrary.

When the proxy receives an Invite-Message from A, it sends a Wireless Access
Request (WAR) to the I-server, which temporarily reserves a flow on the related
APs. If the proxy receives an Ok-response from B, it sends a new WAR to the
I-server to reserve requested bandwidth from B to A. However, when the bandwidth
reservation is performed for both flows, from A to B and from B to A, the proxy
server can continue building the session. If in any process of flow reservation, the
proxy receives reject-response from I-server, it breaks the session. Finally, when B
ends the session by sending Byte-message, the proxy sends a Wireless Free Request
(WFR) to I-server that removes the flows reservation of this session, and then re-
sponse with Ok.

The main challenge of using this mechanism in WLAN is that the small cell size
in WLAN creates frequent handoffs. Besides the handoff latency, the time needed
by WLO to check the new STA-list of the new AP, and then to inform WAS that
must response to the new changes when they critical to the load of the new AP.
Finally, if needed, WAS must inform the corresponded application servers to con-
trol their applications bandwidth. These operations may cost relatively large time,
which may affect the whole QoS in the new APs negatively. Small values of hand-
off latency of and the time interval “ ” are required for performing controlled load
IntServ-QoS in WLAN [5].

5 Measurements and Results

Our first experiments have concentrated on the WAS and WLO latency time in order
to investigate their effects on the real time applications.

5.1 Experiments Description

A special WLAN network based on standard IEEE 802.11b is used in DCF (Distrib-
uted Coordination Function) mode. This network consisted of three notebooks, one
AP and two STAs. The AP was built upon the software “Hostap” (http://hostap.
epitest.fi) and the WLAN card NetGear MA401. Linux Fedora Core 1 has been used
as platform for this AP. The STAs were supplied with MS-Windows XP and the
WLAN cards RoamAbout from Enterasys. For traffic generation and monitoring on

178 R. Daher, D. Tavangarian, and A. Malekpour

IP-level, the software MGEN (http://mgen.pf.itd.nrl.navy.mil) has been used. On
other hand, to check the list of the associated STAs and their MAC-addresses as well
as their links quality and achieved bandwidth, we had to modify the Hostap driver
software in order to outputs the needed statistics in a file at runtime. The I-controller
is built in java and is configured to check the stated output file of the driver periodi-
cally, where many time intervals were tested. The I-server is also built in java; the
platform of I-server had MS windows XP running on a separated computer connected
with AP through a FastEthernet switch. We used PostgreSQL database on another
computer running Linux.

5.2 Results and Discussion

We measured two kinds of time delays; firstly the time delay (T1) between checking
the WLAN-driver’s statistic output by I-controller and the saving of the processed
information in the database of I-server; and secondly the time delay (T2) between
sending an WAR to the I-server and receiving an Ok from it. The Fig. 3 shows the
results of T1 and T2.

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46 51 56 61

Time (s)

D
el

ay
 (

m
s)

T1 T2

Fig. 3. Results of the measured T1 and T2 for time interval =1s

The delay values of T1 are relatively low; the maximal value is less than 70 ms,
where the average value is approximately 16 ms. The greatest delays were produced
by database accesses (3 - 15 ms); however, the usage of static tables instead of data-
base may decrease these delay times in an effective way. Through the T1 measuring,
changes of STA bandwidth and new handing-off STAs are simulated. On the other
hand, T1 does not includes the time delay (d) between the actual critical change of
wireless state and its output in the statistics file output of driver. The time delay
(T1+ +d) forms the maximal possible delay between the actual change of wireless
state and saving this information in the database. Unfortunately, our tools could not
measure the delay “d”, but we think “d” is relatively small time; therefore, the time
“d” was eliminated in our evaluation. We selected =1s by our experiments to

 Application Signaling Protocols as Basis for QoS in IP-Based Wireless Networks 179

simplify the observation process. However, the lower is the time “ ”, the higher is the
processing overhead of the processor, but the more precise is the obtained results of
wireless state, which can then provide better prediction of QoS.

Similarly, the delay values of T2 are relatively low; the maximal value is less than
50 ms, where the average value is approximately 13 ms. The sum (T1+T2) could be
considered as the time delay between checking the associated STAs list and the ac-
ceptance or rejection of an WAR. Accordingly, an average delay of 29 ms could be
required for any effective flow reservation. This value is relatively low in comparison
to real time application requirements; it remains less than the maximal delay (150 ms)
determined for VoIP-applications [9], [10], [11]. In overall, the delay times (T1 and
T2) can be reduced via better optimizing for the implemented software, especially the
database.

Consequently, we suggest that the development of any application signaling
protocol for WN should take the QoS-signaling requirements into consideration,
so that the control traffic for signaling QoS can be drastically reduced on the
wireless side.

6 Conclusion

This paper presented a mechanism called Application Signalling Protocol for Signal-
ling QoS (ASPSQ) in IP-based wireless networks (WNs). We presented an approach
to use applications signalling protocol in order to transport needed information for
resource reservation and admission control, so that the generated traffic by QoS-
signalling protocol on the wireless side can be reduced. We proposed our method
structure and operations. We also introduced an application of this method in the field
of WLAN telephony, where the SIP protocol is used as signalling protocol. Our
experiments concentrated on the latency times of the implemented part of the
ASPSQ-mechanism in WLAN. The results showed that delay times needed to check
the wireless state variation are relatively small; the average value was 16 ms. Simi-
larly, the times needed to reserve a flow; the average value was 13 ms. These rela-
tively small times could form an effective structure of QoS for VoIP applications.

References

1. IEEE Standard 802.11 (08/1999), Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications.

2. IEEE Standard 802.16 (2004), Part 16: Air Interface for Fixed Broadband Wireless Access
Systems.

3. R. Daher, H. Kopp, and D. Tavangarian: “Active Load Balancing in Wireless LAN hot-
spots”, GI 2004, September 2004

4. Ming Li, B. Prabhakaran, Sathish Sathyamurthy: “On Flow Reservation and Admission
Control for Distributed Scheduling Strategies in IEEE802.11 Wireless LAN”, MSWiM’03,
San Diego, California, USA, September 2003

5. Sanjay Jha and Mahbub Hassan: “Engineering Internet QoS”, Artech House, INC. ISBN:
1-58053-341-8, 2002

180 R. Daher, D. Tavangarian, and A. Malekpour

6. Rajiv Chakravort and et al.: “Performance Issues with Vertical Handovers-Experience
from GPRS Cellular and WLAN Hotspots Integration”, PERCOM’04, 2004

7. Robil Daher and Djamshid Tavangarian: “Load Observation and Control Model for Load
Balancing with QoS in WLAN”, IST Summit, Dresden, Germany, June 2005

8. J. Rosenberg, H. Schulzrinne, et al.: “IETF RFC 3261 - SIP: Session Initiation Protocol”,
June 2002

9. ITU-T Recommendation G.114, One-way transmission time, May 2003
10. ITU-T Y.1540 Internet protocol data communication service - IP packet transfer and avail-

ability performance parameters, 2002
11. ITU-T Y.1541 Network performance objectives for IP-based services, 2002
12. Cisco, White Paper: “DiffServ – The Scalable End-to-End QoS Model”, www.cisco.com,

2001
13. Nilanjan Banerjee, Wei Wu, Kalyan Basu, and Sajal K. Das: “Analysis of SIP-based mo-

bility management in 4G wireless networks”, Computer Communications 27 (2004),
October 2003

14. M. Handley and V. Jacobson: “IETF RFC 2327 - SDP: Session Description Protocol”
April 1998

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 181 – 194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

3D Emotional Agent Architecture

Félix F. Ramos, Luis Razo, Alma V. Martinez, Fabiel Zúñiga,
and Hugo I. Piza

Multi-Agent Systems Development Group,
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,

Prolongación López Mateos Sur No. 590, Guadalajara, Jalisco, México
{framos, lrazo, vmartine, fzuniga, hpiza}@gdl.cinvestav.mx

http://www.gdl.cinvestav.mx

Abstract. This chapter presents architecture to design emotional agents
evolving in an artificial 3D environment. The agent behavior and environment
emulator are independent of implementation. To achieve this, a Language of
Interface for Animations in 3D called LIA-3D, is presented. The agent and
environment simulator uses LIA to establish communication with each other.

1 Introduction

The problem we try to solve is how to generate suitable behaviors to virtual creatures
participating in virtual environments. This work is part of GeDA-3D a platform to
design and run dynamic virtual environments [1, 2]. GeDA-3D provides facilities to
manage the communication among agents and mobility services used to share other
services. The architecture to design emotional agents presented in this work allows
the user to develop behaviors for agents which participate in the environments
generated using the declarative virtual editor proposed in [1]. The agent architecture
proposed has following characteristics: The agent is able to receive a goals-
specification that contains a detailed definition about the way the agents’ goals must
be reached. The agent behavior is based on skills, thus an agent must be able to add
skills into his global behavior. Skills are mobile services registered in GeDA-3D
which could be added to agent behaviors. The personality and emotion of agents
make difference in behaviors of agents having the same set of skills. We use a model
of generic personality and an emotion simulation methodology [3] in which a defined
personality and emotion module is used. This module uses a personality defined for
each agent and the current emotional state to the simulation. These characteristics are
used in the case of study presented in this paper. To display results we use a language
LIA-3D we propose. It consists mainly of two parts: the language implemented in
XML and the motor of 3D. This language was designed in XML to facilitate the
communication with other applications as the motor of 3D created in java.

The chapter is organized as follows. Section 2 shows the overall architecture.
Section 3 describes the emotional agent architecture. Section 4 introduces LIA (Animat-
ion Interface Language). Section 5 shows the case of study and finally, section 6
summarizes the conclusions.

182 F.F. Ramos et al.

GeDA-3D is designed to integrate distributed applications, this feature allow us to
execute each agent which belongs to the editor in a distributed way. Therefore, the
virtual-environment editor, rendering and the agents work in a distributed environment.
This allows us to see a well-updated simulation, because the hard work often performed
by the agents is distributed.

This architecture can be used in simulations, guide learning and specifically in
behavior-based scene generation. This last one is based on the principle which provides
that with the same goal and the same scene the goal achievement can generate different
animations, because you only indicate to the agent where to go or which goal to
accomplish, but not how to accomplish it, subsequently the way of doing it can change.

2 Overall Architecture

The whole solution extends GeDA-3D [2]. GeDA-3D is a platform used to integrate and
manage distributed applications. It provides facilities to manage the communication
among agents and mobility services. The main idea is to allow this architecture to
support a declarative virtual environment editor in order to take advantage of its
services. Figure 1 shows the overall architecture of the platform; according to their
competencies, the components of the platform have been grouped in four main modules:
Virtual-Environments Editor, Rendering, GeDA-3D and Agents Community.

The virtual-environments editor serves as an interface between the platform and the
user. That is, it provides means for a modeler to specify the physical laws governing

Fig. 1. Overall Architecture

 3D Emotional Agent Architecture 183

an environment, and to describe a virtual scene taking place in such environment. It
also translates the high-level descriptions into lower-level commands which will be
required by the different components across the platform.

Rendering addresses all the issues related to 3D-graphics, it allows the design
of virtual objects and the display of the scene. This is done by LIA-3D, the scope
of this work.

Agents’ community is composed by the agents in charge of ruling the virtual
objects behavior. These agents are the scope of this work.

3 Emotional Agent Architecture

As we mentioned above, the objective is to create 3D-animated scenes as a result of a
high-level description. The declarative virtual environment editor would generate a
sketch or scene describing the environment and the goals the agents will perform.

The reason of creating this kind of scenes is to watch a behaviors-based scene
simulation. The user specifies what the agents will do (using a declarative language),
instead of how they have to do it. Therefore, the same scene specifications might
produce different simulations.

Figure 2 shows the GeDA-3D agent architecture that allows users to develop
behaviors which take part of the scene.

Fig. 2. Emotional Agent Architecture

We use process algebras to specify the way in which we want an agent (or a set of
agents) to accomplish its (their) goals. We have based the syntax in LOTOS [4].
LOTOS has a defined syntax and semantic, and because LOTOS semantic is defined
operationally, it is possible to implement this semantic in an interpreter, which for a
behavior expression can enumerate the set of possible next actions. This property

184 F.F. Ramos et al.

allows us to implement a function that gives the next goal to try to reach in a specific
time in order to accomplish the whole specification (functions f and g in figure 2). In
this context we use goals instead of actions. A method to generate a goals-
specification and the way an agent can handle it is shown in [5].

A GeDA-3D agent has a knowledge base to represent environment facts. Each fact
is represented by an oration of propositional logic or first order logic. This knowledge
base provides the two main operations performed over a knowledge base: Add
orations into the knowledge base and ask for knowledge. This knowledge base uses
an automatic inference method to ask for knowledge and an automatic method to
remove contradictory orations when the agent adds a new one. When an agent asks
for the fact , this is true if knowledge base is .

The syntax and semantic used on this knowledge base is the same used in
propositional logic and first order logic. The method to relate an oration to a specific
fact in the world (the meaning of an oration) depends on the agent and the specific
problem.

As a GeDA-3D agent evolves into scenes, this knowledge base is commonly used
to provide the agent with an initial knowledge of the world. This allows developing
behaviors focused on the scenes and avoiding time spent recognizing the world before
trying to accomplish the goals-specification.

3.1 Skill Based Behaviors

In order to build agents behaviors we adopted a philosophy of skills-based behaviors,
that is, the agents behaviors are based on a set of skills.

A skill is a task an agent knows how to do, and in order to perform it, the agent
probably would need to execute a sequence of primitive actions, for example catching
a static object or an object in movement. A skill has an algorithm that controls its
specific behavior and it could be implemented by using any of the existent paradigms,
for example Evolutionary Algorithms [6, 7], Neural Networks [8], Finite Automata,
etc. We have focuses on evolutionary computation.

The agent adds skills to its global behavior and these skills are shared in GeDA-3D
as mobile services. At execution time, these skills are moved to the environment
where the agent is executing them or they can be executed remotely.

GeDA-3D has the capability of managing mobile agents and provides a platform
where mobile programming is supported and performed with certain ease. In this
context, a mobile application is not forced to remain in the system where it was
started; instead it has the ability to move from a system to another containing an
object (agent, resource) to interact with. In [9] the model of the mobility platform in
GeDA-3D is shown.

In order to achieve a shared mobile skill, skills are based on the architecture shown
in figure 3. Agent system interface and mobility module are in charge of skill mobility
and this modules are interfaces of mobility services provided by GeDA-3D.

Skill control sets the parameters to fit the skill to a specific agent and it controls the
skill state (in execution, stopped, terminated). Although an agent adds a skill, this one
might be stopped for a while. The agent and environment states, and the agent
descriptors are gotten directly from the agent. Therefore, when a new skill will be

 3D Emotional Agent Architecture 185

Fig. 3. Agent Skill

added, the user only has to define the skill primitive actions, the specific skill behavior
and the skill mode. The skill mode is directly related to the agent emotional state, and it
defines the way that the emotional state affects the agent behavior.

When a skill is executed to an agent, this skill generates a set of primitive actions
to the agent to perform. Thus, if Ap represents the primitive actions to the agent A,
and Sp represents the set of the possible primitive actions the skill S can produce, then
it will be possible to add S in A if Sp ⊆ Ap.

3.2 Personality and Emotional Module

In each human being the personality determines some important aspects of the
behavior as the way to react to diverse situations of life, as well as the emotional
status of a human is an additional significant characteristic that can affect directly the
behavior. Using these two attributes within the Emotional Agent Architecture as an
accurate Personality and Emotional Module we obtain emotional interaction and
realistic simulation as the result. In our work we have used the following two
attributes: the personality as a constant and invariable value that defines the special
character of the agent and the emotional status as a variable value, which is updated
each time, influenced by the natural environment interaction, moreover changed by
internal decay of the emotional status of the agent.

This section describes the methodology used to implement agents with personality
and emotions. The methodology employs a model for both, the generic personality
and the emotion simulation. Using this scheme we apply it into a personality and
emotion module defined by our implementation. Thus an application occupies for
each agent a current emotional state. To update the current emotional state we need to
use inner attributes like personality and emotion as parameters. These parameters are
used in the internal update and decay functions. These functions also receive an
external environment influence variable from a specified environment appraisal. In

186 F.F. Ramos et al.

Personality/
Emotional State

Module

Environment
Appraisal

current
emotion state

environment
emotion influence

Planning
Module

environment
influence

 Agent

Sensorsenvironment
influence

Fig. 4. Top-view of the emotional agent emotion state module and environment influence
interaction

resume this description is the update sequence of the current emotional state
according to the environment influence on the agent and the previous emotional
context (see the fig.4). The update belongs to an infinite inner cycle that keeps the
agents’ “personality/emotional state” updated. In this way, emotional agents are
sensible to their environment and can react to the external emotional stimulus
according to the definition of the states of their personalities and emotions.

This module manages values of personality and emotions each one defined as
vectors with a length equal to the total of emotions. Each emotion is a dimension in a
vector. The elements of these vectors follow a specific personality model as the
OCEAN model [10] that uses a five dimension vector. The size of the vector depends on
the model’s definition or our necessities. Also we applied our implementation on a
methodology for the creation of generic personality and emotion model defined by
Egges et al. [3].

In this work, we define the personality as a vector value of n dimensions length, as
the next expression

p = [α1, . . . , αn]
T ∀i ∈ [1, n]: α ∈[0,1]

Also we have the emotional status vector value at the time t. It’s a vector value of
m dimensions length, where m is defined as the number of emotions used in the
model, it could be different of n, the initial value is eo = 0

et = [β1, . . . , βm] T ∀i ∈ [1, m]: β ∈[0,1]

The emotional environment influence is defined as

at = [δ1, . . . , δm] T ∀i ∈ [1, m]: δ ∈[0,1]

So we have to define a personality-emotion influence Matrix as P0 with a length
denoted by m × n.

After the product of the matrix P0 and the personality vector p is realized

ut = P0 ⋅ p = [ε1 … εm]T

The result is the ut vector. Then taking each εi value of this vector the diagonal
matrix P is built. The matrix values define how strong can be an emotion given by the
p personality.

 3D Emotional Agent Architecture 187

In other words, the P matrix defines a probability to obtain a high or a low value of
an emotion. It depends on the personality definition; this matrix helps us at the update
emotion functions as we see below.

P =

mε

ε
ε

00

0

0

00

2

1

Finally we defined a default constant we named Ce initially with a value 0.01. This
constant is used to define a vector in the decay function implementation that we
define in the next section.

3.2.1 Updating the Emotional State
In this implementation we make use of an emotional model that employs two specific
functions described after. These functions update the emotional state in general. The
first one generates the updating value for the emotional state. The second one makes
an internal emotion change or internal emotion decay. In this implementation we
simplify the functions used by Egges et al. [3] and use them specifically for our
implementation because the linear implementation simplifies the emotions manage in
our architecture. The difference is that we use less parameters than Egges uses [3],
besides we use these two functions to compute the emotional state in a t time given as
described in the next equation.

The definition of our update emotional state function ψe(p, a) consist in a linear
implementation that uses the values of personality and the values of the emotional en-
vironment influence. We define the return value of this function as the next expression

ψe(p, a) = P ⋅ a

Where we use the P matrix in a product between the a vector of environment
influence. Finally with the Ce constant value, we define the decay function. It returns as
value the next vector expression; we can see that in this case we do not use the p value,

Ωe(p) = []Tee CC −−

a

e t (current emotional state)
+

Ψe'(p, a)
(Update Emotion Function)

+
Ωe'(p)

(Decay Emotion Function)
 p, et

 et+1

 emotional
state

updated

 environment
emotion
influence

Personality and
Emotion Module

Fig. 5. A graphical overview of one updates cycle of the emotional state

188 F.F. Ramos et al.

Where Ce = 0.01 as default value. The defined functions are used in the
architecture as illustrated in fig. 5 that shows the internal architectural performance.
The next emotion status vector value is computed adding these functions as defined
by next expression to the current emotional state.

et+1 = et + ψe(p, a) + Ωe(p)

3.2.2 Environment Model and Influence
In order to have an efficient and accurate work using this emotional model, we
include an environment model that could communicate to the agents an emotional
influence. In such a way the environment model must affect the inner decisions,
actions of the agent with the purpose of helping it to choose a behavior from a set
available. The model we use takes into account the action. That is the model must
answer to an action with a value or emotional cost. This model is useful to the agent
to choose best suited behaviors.

In the case of study described in section 5, we define an emotional value for each
action of the agent in the environment; it is done in order to produce the influence in
the agents’ emotional state, even more desirable it is to define the individual influence
of environment event for each agent. Such influence is quantified by the agents’
sensors. Then sensors send this information to the Planning Module. This last one
sends just the emotional environment influence to the Personality and Emotional State
Module influencing the state which updating the values. Then according to the
personality these changes influence its decisions.

For example, if an emotional agent predator is hungry and perceives a prey close.
Such a situation will change the predator’s inner emotional state and his behavior will
turn huntress, thus his future actions must be affected by this emotional change.
Following this rule the predator will try to hunt the prey to stop his sense of hunger.
The satisfaction of a need conforms to a regulation mechanism of his inner status and
keeps the agent in equilibrate state.

4 Language of Interface for Animations in 3D (LIA·3D)

LIA-3D is a language independent of the application to manage virtual environments.
It is constituted mainly of two parts, one of which is the language implemented in
XML and the other it is the motor of 3D. This language was designed in XML to
obtain a greater facility in the communication with other applications, the motor of
3D created in java guarantees us that LIA·3D is multiplatform.

To use LIA·3D it is not necessary to have great knowledge neither of 3D nor of
programming. The user only needs to know XML in order to make actions, (once
developed the avatars by the user) these actions will be performed by each one of the
avatars in the virtual environment.

By means of this language the single user will have to create an application in
some programming language that communicates to the server by means of socket to
send thus the chain in XML, which indicates the action to execute.

 3D Emotional Agent Architecture 189

4.1 Architecture

The user will have to make the chain in XML according to the language specification
if an error arises at the execution time, an XML event indicating the type of error will
be returned as result, these events are defined within the language.

Actions: This module selects the type of avatar with which the wished action will
be made, thus, although in the environment exist a human being avatar and a bird
avatar, this module is able to distinguish the type of avatar that could accomplish the
selected actions.

Fig. 6. Architecture of LIA-3D

Skeleton: In this module all the actions that can be realized by the avatar are specified,
like the basic actions of a skeleton, like moving a movable body element (as a leg), to
advance, etc. The elaborated actions are developed in the type of skeleton; the user
can choose any type of skeleton he/she wishes.

SkeletonX1 . . . Xn: are modules which specialize in the movements depending on the
type of skeleton with which it is desired to make an action, since it is not the same
design an animation of the walking way of a biped and a quadruped.

190 F.F. Ramos et al.

RegistryValues: It contains one or many structures used to store a bounded number of
each joint of a skeleton. The RegistryValues purpose is to evaluate the maximum and
minimum limits of each joint to avoid an erroneous movement. For example, if we
indicate to an avatar of a human being to turn his head at an angle of more than 180º
he will not allow this because such a movement is not natural for a real person.

Render: This module has the following two objectives: the first one is to load the
environment that consists of all objects 3D conforming with/to it. The user is who
describes by means a file the position of each avatar, and object within the
environment. The second objective of this module is to display all the events occurred
within the graphical virtual environment, that is, its evolution in real time.

ServerThreadX1 . . . Xn: These modules receive the actions avatar must realize in the
XML specification described in 4.2, which will be parsed in the obtained order,
therefore the action and its parameters that are due to show in the virtual environment.
The amount of these modules will depend on the number of users connected to the
environment.

ServerRender: This main objective is to offer connections to the clients and it
initializes the virtual environment calling the Render. The connections to the clients
are necessary to present the evolution of the system.

XmlRender: This module parses the XML chain structured according to the LIA·3D
specification from the ServerThreads, and indicates to the Actions module which
action must be realized together with necessary parameters to show the changes in the
environment.

Objects3D: This module is a sort of database containing all the objects 3D that the
user can use to design his virtual environment 3D. The objects of Objects3D can be
classified as avatars that are those having a skeleton, and others that are unanimated
objects.

Scenes: Similarly to the Objects3D this module contains a set of scenarios defined.
Those scenarios can be used by virtual world creators. These module contains not just
the virtual representation but also all the context relevant to the scenarios [1, 2].

Limit: It stores limit maximum and minimums of movements of all joints of a
skeleton. It helps the user to order a more natural movements and thus to have
representations as realistic as possible.

4.2 Language

The objective of LIA·3D language is to manage a virtual environment by a sequence
of instructions in order to display the evolution of that virtual environment. LIA-3D is
based on XML because it has become a standard of communication and mainly
because it allows increase easily the expressiveness of LIA-3D and the user can
manage it without special knowledge of 3D. That is, a client (GeDA-3D) indicates in

 3D Emotional Agent Architecture 191

a declarative way which avatars must be placed in a certain position in the virtual
environment and which actions must be executed, but not the way they must be
executed.

After the virtual environment has been created we only have to manipulate the
avatars, for which the actions defined within LIA·3D will be used, these actions will
indicate to avatars which parts of their skeletons must be modified to obtain a
particular result.

The client (GeDA-3D) must know the LIA-3D language specification in order to
build the XML chains containing the actions the virtual creatures must execute. These
chains are received by the ServerThreads (clients). Next these chains are sent to the
XmlRender to be parsed and to obtain the actions together with its parameters. Once
this is achieved, this last one sends actions and parameters to the Actions module
which selects the type of avatar that must realize the actions described. Together with
the actions to be realized by the virtual creatures the emotion with which the actions
are realized must be indicated. The emotions are specified by the client (GeDA-3D) in
VHML [11] which reunites main characteristics of several languages that describe
different aspects related to the avatar’s emotions (face animation, dialogues, etc.), the
part that uses LIA·3D is the face animation.

With the integration of the actions defined in LIA·3D and the face animation of
VHML, more convincing animations are obtained, in this way we can indicate to an
avatar which action will be executed and which emotional state will be present in the
display at the time of executing it. For example, if within the environment there is an
avatar that represents a person, we can give him a command to walk certain distance
sadly, the walking action is defined in LIA·3D and the emotional status “sad” is
declared in VHML. This will result in displaying a special way of walk that express
sadness.

 VHML counts with a part of animation of the body, but this section does not
indicate actions as LIA·3D does, in this way LIA·3D facilitates a lot the work of the
user, it helps him to avoid creating an animation moving each joint of a skeleton, this
work is already done by LIA·3D. We consider that these facilities must be included in
future improvements of VHML.

Resuming user only needs to know LIA·3D he doesn’t need to bother about how
animation is made internally. The structure of the language is simple; the next code is
an example of an action:

<action>
 <walk>
 <avatar> 1 </avatar>
 <steps> 3 </steps>
 <turn> -30 </turn>
 </walk>
</action>

As previously indicates the action of the avatar includes the necessary parameters
to realize the action. The answer to an action LIA-3D is an event that indicates if there
is an error or not. In the case of an error the type of error in the action is indicated. For
example, if the client indicates the walk action to the avatar, and there is for instance a
collision with another object 3D contained in the virtual environment, LIA·3D will
respond with a collision event. Next code shows an example:

192 F.F. Ramos et al.

<event>
 <collision>
 <object1> 1 </object1>
 <object2> 4 </object2>
 </collision>
</event>

With this event the user will be able to know if the solicited action finalizes
satisfactorily.

Fig. 7. Some images taken from the virtual environment of our case of study

 3D Emotional Agent Architecture 193

5 Case Study

It consists in a virtual environment where two agents interact. The user can declare
items into the boxes. These items could be gold, an insect or a dog. When one of the
agents opens one box, he can find gold, if it does, he gets surprised and earns the gold
and increments his gold points, or if he finds an insect, the agent reacts stunned and
leaves the box quickly, if the dog appears, the dog runs trying to bite the agents, and the
agents react running with fear; in the case that one agent earns too much gold and
another doesn’t, the first agent can change his inner emotional status, affected by this
event, and he gets angry and may try to strike his rich agent partner, or if one agent
only finds a lot of insects and dogs, he can lose his confidence and get sad and angry.

This case study represents the single scenario: two ‘human’ agents are in a small
room, in which a lot of boxes are kept. Each box has different contents. These
contents can be something good as gold coins or something bad as insects or a dog.
The simulation consists in the emulation of these two agents. They have to open all
the boxes, one at a time, they must try to find all the gold coins running the risk of
discovering the undesired contents as insects or a mad dog, (see fig. 7).

This simulation works using the genetic algorithm that works with trajectories and
some options to make selections to chose the right way to reach the next point, to
walk or to take a box, to avoid a dog if it is the case or to reach another agent to give
him a punch.

6 Conclusions

This paper is proposed an emotional agent-architecture and LIA-3D a language
independent of application. The emotional agent architecture and LIA-3D are part of
GeDA-3D [2]. The objective of our architecture is generating realistic animation for
virtual creatures evolving in the virtual environments including emotions in their
execution. Maybe the most important characteristic of this architecture is that it
allows specifying goals but not the way to get those goals. On the other hand, the
LIA-3D language presented is based on XML to improve efficiency aand openness,
this last means that language can be enriched by new necessitated structures for
specific events. To prove the emotional architecture and the language LIA-3D we
develop a very simple example using our both modules of GeDA-3D. The results of
the example are very successful, but the main drawback is the time to get results of the
render module. This problem will guide our next studies. However a solution of this
problem is to get a film of the solutions that can be displayed after all processing.

Face to face with another works of this kind of simulations as Animus [13] or the
Oz project [12], in this work we can show the functionality in a 3D scenario with the
help of LIA-3D, also we can change the behavior of the agents using the emotional
agent implementation, these attributes are not included in the Animus or in the Oz
projects [12], Animus only works with reactions established before the simulation
runs, our work change these reactions in relation to the environment influence and the
actual emotional status providing more believable and real behavior. The Oz project
works only in a terminal display which gives the actions and changes of the scenario
in text mode; our implementation shows all the actions in a 3D scenario.

194 F.F. Ramos et al.

References

1. H. Iván Piza, Fabiel Zúñiga, Félix F. Ramos. A Platform to Design and Run Dynamic Virtual
Environments. IEEE Cyberworlds 2004, November in Japan. ISBN 0-7695-2140-1.

2. Félix Ramos, Fabiel Zúñiga, H. Piza. A 3D-Space Platform for Distributed Applications
Management. International Symposium and School on Advanced Distributed Systems
2002. Guadalajara, Jal., México. November 2002. ISBN 970-27-0358-1

3. Arjan Egges, Sumedha Kshirsagar, Nadia Magnenat-Thalmann. Generic personality and
emotion simulation for conversational agents. Computer Animation and Virtual Worlds.
Volume 15, Issue 1, Pages 1–13. Published Online: 8 Mar 2004.

4. L. Logrippo, M. Faci, M. Haj-Hussein. An Introdiction to LOTOS: Learning by Examples.
University of Ottawa. Protocols research group. Department of computer science.

5. Fabiel Zúñiga, H. Piza, Félix Ramos. Specifying Agent’s Goals Using Process Algebras.
LNCS Advanced Distributed Systems. International Symposium and School on Advanced
Distributed Systems. Guadalajara, Jalisco, México. Enero 2005.

6. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, 1975.

7. D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, 1995.

8. Xin Yao. A review of Evolutionary Artificial. Neural Networks. Commonwealth Scientific
and Industrial Research Organisation Division of Building, Construction and Engineering.
Australia.

9. Felix F. Ramos, Fabiel Zuñiga, Antonio Alcala, Ivan Piza. Specification of Distributed
Systems Using Multi-Level Petri nets. 2003 IEEE International Conference on Systems,
Man & Cybernetics. October 5–8, 2003 – Hyatt Regency, Washington, D.C., USA.

10. P.T. Costa and R.R. McCrae. Normal personality assessment in clinical practice: The NEO
personality inventory. Psychological Assessment, (4):5–13, 1992.

11. Andrew Marriott: VHML – Virtual Human Markup Language. School of Computing,
Curtin University of Technology, Melbourne, Australia in conjunction with HF2002 and
OZCHI2002, 29th November, 2002.

12. W. Scott Neal Reilly Believable Social and Emotional Agents, School of Computer
Science Carnegie Mellon University, May 1996.

13. Daniel Torres, Pierre Boulanger The ANIMUS Project: A Framework for the Creation of
Synthetic Characters, Department of Computing Science, University of Alberta. 2003.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 195 – 206, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distributed Preflow-Push
for the Maximum Flow Problem

Thuy Lien Pham, Marc Bui, Ivan Lavallee, and Si Hoang Do

Laboratoire de Recherche en Informatique Avancée, Université Paris 8, France
tl.pham@univ-reims.fr,

{Marc.Bui, Lavallee}@univ-paris8.fr, sihoang@free.fr

Abstract. We present a new algorithm that solves the problem of distributively
determining the maximum flow in an asynchronous network. This distributed
algorithm is based on the preflow-push technique. Sequential processes, execut-
ing the same code over local data, exchange messages with neighbors to estab-
lish the max flow. This algorithm is derived to the case of multiple sources
and/or sinks without modifications. For a network of n nodes and m arcs, the
algorithm achieves O(n2m) message complexity and O(n2) time complexity.

1 Introduction

We consider a connected directed graph with a positive function of capacity on arcs.
There are two special nodes in graph, called source and sink. Such a graph is referred
as a “network”. The maximum flow problem is stated as follows: in this network we
wish to send as much flow as possible from the source to the sink, without exceeding
the capacity of any arc.

The maximum flow problem is widely studied in both applications and theory. Its
applications can be found in diverse fields such as engineering, scheduling, traffic
management...Recently, it has been applied in some new domains, such as coding
network and wireless ad hoc networks [16]. The fundamental algorithmic techniques
for solving the problem are presented in [5], [8], [9], [3], [4] and [2]. There have been
a number of survey papers and books on theoretical and experimental analysis of
algorithms, see e.g. [7], [10], [11], [12]. A detail comparison about the complexity of
existed algorithms can be found in [1].

In general there are two principal categories for solving the problem:

1. Augmenting path method introduced by Ford-Fulkerson [5]. The algorithms of
this category maintain balance constraints at every node of the network except
the source and sink nodes, and incrementally augment flow along paths from the
source node to the sink node.

2. Preflow-push method introduced by Golberg-Tarjan [2] who takes the original
idea of preflow from Karzanov [9]. The idea of preflow-push algorithms is to
flood the network so that some nodes haves excesses (or buildup of flow). The
algorithm discharges excesses at nodes by sending flow forward toward the sink
node, or backward toward the source node: nodes send flow on individual arcs
based on the knowledge it has about itself and its neighbors. This algorithm of

196 T.L. Pham et al.

Goldberg-Tarjan makes decisions locally and hence, is suitable for a distributed
version in the asynchronous network.

There are two synchronous distributed algorithms presented in [13] that based on
the first method to find the maximum flow in network with O(n3) message complexity
and O(n2) time complexity, where n is the number of nodes in network. In employing
synchronizer technique to that algorithm, an asynchronous algorithm has proposed
with message complexity and time complexity respectively is O(kn3) and
O(n2logn/logk) where k is an integer, 2 < k < |N|. Takkula [14] has proposed an asyn-
chronous algorithm using second approach but it is not efficient on both number of
exchanged messages and execution times.

In this paper, we present an asynchronous distributed algorithm which determines
the maximum flow of network based on the Goldberg-Tarjan’s technique. We con-
sider the graph as a network with bidirectional communication links. We assume each
node initially knows capacities of outgoing arcs from and incoming arcs into it, more-
over source node knows the number of nodes in graph. In this network, each node
executes the same local algorithm, which consists of sending messages over adjacent
links or waiting for incoming messages to process them. Our algorithm takes O(n2m)
message complexity and O(n2) time complexity. It can be applied to case of multiple
sources and/or sinks without any modifications.

The rest of paper is organized as follows. In Section 2, we briefly introduce the
maximum flow problem and Goldberg-Tarjan technique. In Section 3, we present a
high-level and detailed description of our distributed algorithm. The proofs and com-
plexity analysis of algorithm is presented in Section 4. Concluding remarks are given
in Section 5.

2 Background

2.1 State of the Art

Maximum Flow Problem. We consider a network G=(N,E) consists of a set N of
nodes with a set E of arcs (directed edges), the source node s and the sink node t.
Let’s n=|V|, m=|E|. For each arc e ∈ G, there is an associated capacity c(e), with
c(e)>0.

A flow is a function f: E→R≥0 satisfying the capacity constraints and the flow con-
servation constraints:

1. 0 f(e) c(e), ∀e ∈ E

2. { }ts,\,),(),(
),()),(

Vvwvfvuf
EwvEvu

∈∀=
∈∈

The value of a flow f is defined:

∈ ∈
==

Evs Etv

tvfvsff
),(),(

),(),(

The maximum flow problem is to find a flow of maximum value.

 A Distributed Preflow-Push for the Maximum Flow Problem 197

Residual Network. The residual network of G induced by a flow f is Gf=(N, Ef)
where Ef, set of residual arcs, is constructed as follows. For ∀e ∈ E:

• If f(e) = 0 : e is also an arc in Ef with capacity r(e) = c(e).
• If 0 < f(e) < cap(e) : e is also an arc in Ef with capacity r(e) = c(e)−f(e). Add

another arc erev in reverse direction of e with capacity r(erev) = f(e) into Ef.
• If f(e) = cap(e) : e is not in Ef but an arc erev in reverse direction of e with the

capacity r(erev) = cap(e) is added into Ef.

Any residual arc (u,v) ∈ Ef has capacity r(u,v) > 0; i.e., any arc in Gf can admit
more flow. An example of a residual network is shown in the figure 1.

Fig. 1. Example of residual network

The residual network is actually network of remaining capacities on arcs.
Working on residual network, while the augmenting path algorithms maintain fea-

sibility and attempt toward optimality, the preflow-push algorithms attempt toward
feasibility. We will describe only the preflow-push technique in the following section.

2.2 Golberg-Tarjan’s Preflow-Push Technique

For a node v, we call:

∈ ∈
−=

Evu Ewv

wvfvufvexcess
),(),(

),(),()(

the excess of v. It is the difference between the total flow into v and the total flow out of
v. The flow conservation constraint states that all nodes except s and t have zero excess.

By a relaxion on this constraint that no node in V\{s,t} has negative excess at in-
termediate steps, Karzanov has introduced notion of preflow. A preflow f is a function
f: E → R≥0 with:

• 0 f(e) c(e), ∀ e ∈ E
• excess(v) 0, ∀ v ∈ V \ {s,t}

A node is active if its excess is positive. When such a node exists, the current flow
is infeasible. The idea is then to push its excess flow to neighbors closer to the sink.
To do this, Goldberg-Tarjan suggested a height function (or distance function) height
on nodes of network such that valid heights satisfy: height(t) = 0 and height(v)
height(u)+1, ∀(u,v) ∈ Ef. In fact, height(v) is a lower bound on the shortest path (on
number of arcs) from node v to the sink t. A push is performed only from a higher

198 T.L. Pham et al.

node to a lower node. An residual arc e = (v,u) is admissible for v if height(v) =
height(u)+1.

Let v is an active node, e = (v,u) is an outgoing residual arc from v. A push of
=min{excess(v), r(e)} across e then sends unit flow from v to u. It increases ex-

cess(u) by and decreases excess(v) by . If e is an arc of G, a push across e increases
the flow across e by and a push across erev decreases the flow across e by .

The Goldberg-Tarjan’s algorithm searches for admissible arcs from an active node
to push flow (source node is initially active). If no more admissible arcs exist, the
heights are increased (lift the nodes) in order to create admissible arcs. Eventually the
algorithm stops with no active nodes. At that stage the flow is feasible for the first
time and also maximal.

Algorithm Preflow-push
begin

height(s) := |V|, height(t) := 0
compute the exact distance labels height(v), ∀v ∈V\{s,t}
forall outgoing arcs e from s do saturate e

/*main loop*/
while the network contains an active node do

select an active node v
push−lift(v)

end
Procedure push-lift(v)
begin

if the network contains an admissible arc (v,u) then
push min{excess(v),r(v,u)}units of flow from v to u

else
set height(v) = 1+ min{height(u) | r(v,u) > 0}

end

3 Our Distributed Algorithm

The Model of Computation. We assume that each node in the network G corre-
sponds to a sequential process that executes asynchronously a program. Each arc (v,u)
in G corresponds to a bi-directional communication link between process v and proc-
ess u. All processes execute identical programs over local data. Processes may start
executing the algorithm either at any arbitrary moment or upon receiving a message
which triggers their execution of algorithm. Communications are in message-passing
mode.

First, we describe how the algorithm operates in a global manner. Then, we will
describe the local algorithm that each node must execute in to obtain the final
result.

3.1 A High-Level Description

The execution of algorithm proceeds in two phases. The first phase sets heights of all
nodes. The second phase establishes the maximum flow: each node either scans the
downhill arcs and pushes as much flow as possible or lifts to continue transmitting
flows.

 A Distributed Preflow-Push for the Maximum Flow Problem 199

(1) Initialization of node heights
We assume that the source node knows the number of nodes in graph, n. This

phase will set sinks’ heights to 0 and sources’ heights to n. The heights of other nodes
are set in breadth first search way. For starting, sinks scan its adjacency arcs and
sends along init messages carried the height tag set to zero. When an init message
arrives at a node, node’s height is checked. If it is zero (for the first time the node
receives this message) or strictly greater than message’s height tag plus one, it is up-
dated to new value. Once node’s height is updated, the node will propagate init mes-
sages to neighbors over its incoming arcs of G and send messages informing its new
height to neighbors over its outgoing arcs of G.

When the last init message reaches the source, the source will set its excess enough
to saturate its outgoing arcs, and algorithm goes through the following second phase.

(2) The excess is pushed from the source downhill towards the sink
In this phase, we maintain the rule that only a higher node can push to a lower node.
The receipt of the last init message at source invokes a procedure which discharges

its excess by pushing flow to neighbors. For the source, this procedure realizes satu-
rating its outgoing arcs. When flow arrives to a node, it makes node’s excess positive.
Then this node will execute the same procedure above to transmit its excess to down-
hill neighbors. This procedure scans admissible arcs and tries to push as much flow as
possible across. In our algorithm, a positive capacity link e = (v,u) (also is an outgoing
arc from v in residual network Gf at that moment) is admissible for v if heightv
heightu+1, that differs from the sequential algorithm because of our change below.
When the node has no downhill neighbors, flow becomes trapped locally at node. At
this moment, we must lift the node, and the flow is transmitted again.

There is a difference between our choices with sequential Golberg-Tarjan’s algo-
rithm of which responses to the following question: how much should we lift the node?
Because a node, after lifting and pushing excess across the link, will continue to scan
and choice another node to push if its excess remains positive. So we will increase
node’s height to a threshold which is just enough for that node can push all its remaining
excess. This accelerates the execution of algorithm. To seek this threshold fast, for each
node we can maintain a list of neighbor’s heights in increasing order.

As we are in an asynchronous distributed network, there are moments when one node
wants to transmit flow to a node which is lifting with its new height is greater than
sender’s height and still has not updated in sender’s local data yet. This happens only
when a node receives a push from a lower sender. Then the node must reply a non-
successful message (which denotes that push is not permitted) in order to tell the sender
to retire sent flow. Eventually, no more flow can reach the sink. As we continue to lift,
the remaining excess flow eventually flows back towards the source. The algorithm will
terminate when all the flows either are pushed into the sink or returned to the source.

3.2 Detail Description

Nodes. Node v maintains variables indicated in algorithm block 1 below, including
the value of excess flow excessv; its current height heightv; a list of neighbors
neighborlistv with their current heights heightv[u], ∀u ∈ neighborlistv and residual
capacities of link (v, u), rv[u], ∀u ∈ neighborlistv. For node v, rv[u] expresses
existence of an outgoing arc from v to neighbor u in the residual network Gf reduced

200 T.L. Pham et al.

by flow f at that moment: when rv[u] is zero, there is no outgoing arc (v,u) in Gf. Node
v has also a variable typev that denotes what kind it is. We define three possible kinds
of nodes in the network: SOURCE, SINK, and NORMAL. In addition we have a
variable nbInitHeightMsgs which is used for SOUCE nodes to count number of re-
ceived init messages. Finally, a node has a state variable statev.

Node states. A node is either inactive when node’s excess is zero or active otherwise.
Initially, all nodes are in the inactive state. The sink is always inactive. In the begin-
ning of second phase, the source is active.

Messages. Messages (INIT-HEIGHT, h) are used in the first phase, where h is
sender’s height. On receiving this message, the receiver runs algorithm block 5 in
which you can see the propagation of these messages. If receiver is SOURCE, the last
INIT-HEIGHT message makes it active and procedure push() is invoked. This type
of messages will not be used any longer.

Messages (PUSH-REQUEST, value) is used in the routine push(). Upon receipt of
this message, the node checks sender’s height in local data. If this value is not greater
than its height, it will reply an answer message (PUSH-REQUEST-ANS, value,
NOK) back to sender. Otherwise, the node accepts this push; updates its excess, its
state (other SINK nodes) and capacity of correspondent link. If it is not a SINK node,
it will call routine push() to discharge its excess flow. If this routine has terminated
but the node still has excess then the procedure lift() will be invoked. The process-
ing of PUSH-REQUEST messages is detailed in algorithm block 8.

About the sender of PUSH-REQUEST message, upon receipt of an answer (PUSH-
REQUEST-ANS, value, NOK) (see algorithm block 9) it recovers sent flow by adding
its excess to value, resets its state and updates capacity of correspondent link, calls rou-
tine push() and also lift() if it remains excess but has no admissible link.

Another type of message is (NEW-HEIGHT, h). We use these messages for updat-
ing a new height of a node. Upon receipt of this message, receiver updates sender’s
height in local data. Note that we can maintain the list of neighbor nodes in increasing
order of node heights. This helps to determine fast the local variable height in algo-
rithm block 10.

init-height(). This procedure propagates (INIT-HEIGHT, heightv) messages to
neighbors over incoming arcs into v of G, and update new height of v in local data of
neighbor nodes over outgoing arcs from v of G.

push(). This routine is presented in algorithm block 7. When a node (except SINK
nodes) receives any message that makes its excess positive, it becomes active and
executes the routine push(). This routine implements sending as much flow as possi-
ble to neighbor nodes over admissible links, i.e. neighbors are lower than node and
correspondent links’ residual capacities are positive. The node scans admissible links,
and sends across PUSH-REQUEST messages with a value of flow set to minimum of
its excess and link’s residual capacity. The node also updates immediately his local
variables such as value of excess, residual capacity of correspondent link. Once there
are no more admissible links or node’s excess is zero, the routine at node is stopped.

lift(). This procedure is called when the routine push() has stopped but the node’s
excess remains positive. First, the node calculates a new height such that this new

 A Distributed Preflow-Push for the Maximum Flow Problem 201

height is just enough for the node can send all of its remaining excess. Then, the node
sends NEW-HEIGHT messages to all its neighbors for updating its new height (see
algorithm block 10).

When all nodes (except SOURCE nodes) are in state inactive, this means there are
no more messages have been changed, the algorithm terminates.

1. Node variables

type
v
 : (SOURCE, SINK, NORMAL)

state
v
 : (inactive, active)

excess
v
 : real;

height
v
 : integer;

neighborlist
v
 : list of neighbors;

height
v
[u], ∀ u ∈ neighborlist

v
 : interger;

r
v
[u], ∀ u ∈ neighborlist

v
 : real;

nbInitHeightMsgs : integer;

2. The Algorithm (as executed at each node)

/*As the first action of each process at node, the algorithm
must be initialized */
initializaton();
/* main loop */
while (true) do

wait for incoming messages msg;
process msg;

end while

3. initialization()

excess
v
 = 0;

state
v
 = inactive;

height
v
 = 0;

for all u ∈ neighborlist
v
 do

if (u, v) is an incoming arc into vψin G then�
r
v
[u] = 0;

else
r
v
[u] = capacity of (v, u);

end if
height

v
[u] = 0;

end for
nbInitHeightMsgs = 0;
if type

v
 = SINK then

init − height();
end if

4. init-height()

for all u ∈ neighborlist
v
 do

if r
v
[u] = 0 then
Send (INIT-HEIGHT, height

v
) to u;

else
Send (NEW-HEIGHT, height

v
) to u;

end if
end for

202 T.L. Pham et al.

5. Upon receipt of (INIT-HEIGHT, h) from w

height
v
[w] = h;

if type
v
 ≠ SOURCE then

if (height
v
 = 0)||(height

v
 >(h + 1)) then

height
v
 = h + 1;

init − height();
end if

else
nbInitHeightMsgs

v
 = nbInitHeightMsgs

v
 + 1;

if nbInitHeightMsgs
v
 = number of outgoing arcs of v then

height
v
 = |V|

excess
v
 =

u ∈ neighborlistv
r
v
[u];

state
v
 = active;

push();
end if

end if�

6. Upon receipt of (NEW-HEIGHT, h) msg from w

height
v
[w] = h;

7. push()

if type
v
 = SINK then

while (excess
v
 > 0) && (∃u ∈ neighborlist

v
 such that (r

v
[u]

> 0) && (height
v
[u] < height

v
)) do

δ = min{excessv, rv[u]} ;
excess

v
 = excess

v
 - δ;

r
v
[u] = r

v
[u] − δ;

Send (PUSH-REQUEST, δ) to u;
end while

end if

8. Upon receipt of (PUSH-REQUEST, δ) msg from w
if��height

v
[w] > height

v
 then�

r
v
[w] = r

v
[w] + δ;

if (state
v
 = inactive)&&(type

v
 ≠ SINK) then

state
v
 = active;

end if

excess
v
 = excess

v
 + δ;

if type
v
 ≠ SINK then

push();
if excess

v
 > 0 then

lift();
end if

end if
else

Send (PUSH-REQUEST-ANS, δ, NOK) to w;
end if

 A Distributed Preflow-Push for the Maximum Flow Problem 203

9. Upon receipt of (PUSH-REQUEST-ANS, δ, NOK) msg from w

excess
v
 = excess

v
 + δ;

state
v
 = active;

r
v
[w] = r

v
[w] + δ;

push();
if excess

v
 > 0 then

lift();
end if

10. lift()

if (type
v
 ≠ SOURCE)&&(type

v
 ≠ SINK) then

ht = min{h|
u∈neighborlistv:heightv[u]≤hrv

[u] ≥ excess
v
}

height
v
 = ht + 1;

for all u ∈ neighborlist
v
 do

Send (NEW-HEIGHT, height
v
) to u;

end for
push();

end if

3.3 Termination and Correctness Proof of the Algorithm

The algorithm will terminate because the number of messages exchanged is bounded.
We will analyze and determine this upper bound in the following section. This type of
termination is said “message termination”.

When the algorithm terminates, there are no active nodes except the sources. Since
source height is always equal to n, the residual network at this time contains no path
from the source to the sink, so the flow is maximal.

4 Complexity of the Algorithm

4.1 Communication Cost

We first determine the total number of messages using in the first phase of algorithm.
We have propagated init messages in breadth first search way and it is easy to see that
the number of messages used for this is 2mn.

To estimate the upper bound on the number of messages exchanged during second
phase of algorithm, we use results in following lemmas.

Lemma 1. The height of any node is bounded by 2n − 1, where n = |V|.

Proof: During the execution of algorithm, when a node v lifts, it is moved upward to a
threshold h enough for v to push all its remaining excess. Then there are two cases:

Case 1. For admissible nodes u that heightu < h − 1: pushes from v to u will saturate
links (v, u) in network, i.e. flow sent across (v, u) is δ = rv[u]. Such a push is called
saturating (and non-saturating otherwise). Then after these pushes, there is no more
such positive capacity link (v, u).

204 T.L. Pham et al.

Case 2. For admissible nodes u that heightu = h − 1: pushes from v to u can saturate
(v, u) or not, i.e. we can have two positive capacity links (v, u) and (u, v) after these
pushes, but we have a constraint which is heightv = heightu + 1.

So after lifting v and discharging remaining excess of v, there exists no positive ca-
pacity link (v, u) from v such that h = heightv > heightu +1, i.e. it doesn’t exists any
outgoing arcs (v, u) from v in residual network such that heightv > heightu +1. As
source nodes do not change heights n, height of any node v is bounded by the longest
length (on number of arcs) of any path from v to s in the residual network, i.e.
heightv<2n.

Lemma 1 implies that total number of lifts of a node does not exceed 2n. When this
node lifts, there is a NEW-HEIGHT message transmitted across links from it. So total
of NEW-HEIGHT messages across this link during second phase of algorithm does
not exceed 4n. This implicates total of NEW-HEIGHT messages across all links dur-
ing second phase does not exceed 4mn.

Lemma 2. There are at most 3n2/ 2 − 5n/2 lifts and at most nm saturating pushes
during the execution of algorithm.

Proof: Using result of Lemma 1, and as there are no arcs (v, u) such that heightv >
heightu+1 in residual network, so the sum of node heights in network is bounded by
(n+1)+(n+2)+...+(2n−1) = 3n(n−1)/2. In the beginning of second phase, this sum is at
least n, so it increases by at most 3n(n−1)/2−n = 3n2/2 − 5n/2. Each time when a node
lifts, its height increases by at least one unit. So the total number of lifts during the
execution of algorithm does not exceed 3n2/2 − 5n/2.

Now we consider an arc (v, u) ∈ G . For a saturating push across link (v, u), it must
have heightv ≥ heightu + 1, and for a saturating push across link (u, v) it must have
heightu ≥ heightv + 1. As heightv and heightu are inferior to 2n, so number of saturat-
ing pushes across a link (vu) does not exceed n. This implies that the total of saturat-
ing pushes is at most nm.

Lemma 3. The algorithm performs at most 2n2(1+m) non-saturating pushes.

Proof: The principle to prove lemma given here is due to [6,13]. Let A denote the set
of active nodes. Consider a potential function Φ = Σv∈Aheightv. Initially Φ = 0. During
the execution of algorithm there are two possible cases:

Case 1. A node v wants to push his excess but there is no admissible link. In this case
its height increase by ε ≥ 1 units. So Φ is increased at most ε units. Since heightv < 2n,
the total increase in Φ due to lifts is bounded by 2n2.

Case 2. There is an admissible link for node to push flow across. A saturating
push on link (v, u) may create a new excess at node u, node u becomes active, and
therefore increasing Φ by heightu which is bounded by 2n. According to the result
of lemma 2, the number of saturating pushes does not excess nm, so Φ can in-
crease 2n2m over all saturating pushes. A non-saturating push across link (v, u)
will deactivate v and may or may not activate u. Thus Φ decreases by heightv but
may increases by heightu = (heightv −1). In either case, Φ decreases by at least
one unit per non-saturating push.

 A Distributed Preflow-Push for the Maximum Flow Problem 205

Finally, the total increase of Φ is at most 2n2 + 2n2m. Each non-saturating push de-
creases Φ by at least one unit and at the end Φ is zero. Consequently, the algorithm
can perform 2n2+2n2m = 2n2(m+1) non-saturating pushes, proving the lemma.

Lemma 2 and 3 implies that the total pushes either saturating or non-saturating is
bounded by nm + 2n2 + 2n2m. Supposing that all these pushes are successful, we now
estimate the total number of non-successful pushes. A push can be refused only when
the receiver lifts (but the sender is out of date). As there are at most 3n2/2 − 5n/2 lifts,
so at most 3n2/2 − 5n/2 non-successful pushes. A non-successful push needs a non-
successful message. This implies that total number of messages being exchanged over
all pushes, is at most (3n2/2−5n/2+nm+2n2+2n2m) = 2n2m+7n2/2+nm−5n/2. These
messages are PUSH-REQUESTs and PUSHREQUEST- ANS(NOK)s.

To summarize, the total number of messages used is bounded by 2mn + 4mn
+2n2m+7n2/2+nm−5n/2 = 2n2m+7nm+7n2/2−5n/2 that is correspondent to O(n2m).

4.2 Timing Cost

For the notion of time, we assume that all message delay times are bounded and equal.
The distributed asynchronous algorithm is analyzed using the virtual notion of pulses of
the algorithm. A pulse may actually be considered as the equivalent of a (global) clock
pulse, or simultaneous clocks’ ticks in a synchronous distributed system. During each
pulse of the algorithm, nodes receive messages, perform local computation, and send
messages destined to be received at the beginning of the next pulse.

Lemma 4. The maximum number of pulses is at most n+2n2

Proof: Number of pulses for the last init message propagated from sinks to sources is
at most equal to the longest path from sources to sinks. So the number of pulse in this
phase of algorithm execution is less than n.

Now we consider number of pulses in second phase of algorithm. Consider a value
of flow pushed from source to sink: if it is not trapped at any node, it is transmitted
straight toward sink. And the number of pulses for this is the length of path on which
flow is transmitted across. This number is less than n. If that value of flow is trapped
at a node then this make node lift. So the number of pulses that assures a value of
flow either pushed to sink or returned to source, is at most equal to the total number
of lifts of all nodes on the longest path from source to sink hence is less than 2n2,
proving the lemma.

The time complexity of algorithm is measured with at most the maximum number
of pulses during execution of algorithm, that is O(n2).

5 Conclusion and Future Works

The estimate of message complexity can be still reduced. An amortized analysis on
the numbers of pushes and on the number of lifts should give a better bound. And the
algorithm can be still improved by heuristics in lifting a node.

We think that it is not possible to obtain a bound less than O(n2m) with n = |V| for
this kind of distributed maximum flow algorithm, but is possible to obtain improve-
ments on the coefficients and other terms.

206 T.L. Pham et al.

In the future we will improve this algorithm in order to adapt to the real-time flow
problem [15].

References

1. Andrew V. Goldberg: Recent Developments in Maximum Flow Algorithms. Technical
Report, April 1998

2. Andrew V. Goldberg and Robert E. Tarjan: A New Approach to the Maximum Flow
Problem, Journal of ACM, 35(4):921-940, 1988

3. Harold N. Gabow: Scaling Algorithms for Network Problems. Journal of Computer and
System Sciences, 31(2):148-168, 1985

4. Andrew V. Goldberg and Satish Rao: Beyond the Flow Decomposition Barrier. Journal of
ACM, 45(5):783-797, 1998

5. Lester R. Ford and Delbert R. Fulkerson: Flows in networks. Princeton University Press,
Princeton, 1962

6. Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin: Network Flows – Theory,
Algorithms and Applications. Prentice-Hall, Inc. USA, 1993

7. Jack Edmonds and Richard M. Karp: Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems. Journal of ACM, 19(2):248-264, 1972

8. Dinic: Algorithm for Solution of a Problem in Networks with Power Estimation. Journal
of ACM 19:248-264, 1972

9. Karzanov: Determining the Maximum Flow in a Network by the Method of Preflows.
Soviet Mathematics Doklady, 15:434-437, 1974

10. J. Cheriyan and K. Mehlhorn: An analysis of the highest-level selection rule in the pre-
flow-push max-flow algorithm. Information Processing Letters 69:239-242, 1999

11. Boris V. Cherkassky and Andrew V. Goldberg: On Implementing Push-Relabel Method
for the Maximum Flow Problem. Algorithmica, Vol. 19, pages 390–410, 1997

12. Richard J. Anderson and Jo‹o C. Setubal: On the Parallel Implementation of Goldberg’s
Maximum Flow Algorithm. Proc. of the 4th Annual ACM Symp. on Parallel Algorithms
and Architectures, pp. 168–177, 1992

13. Valmir C. Barbosa: An introduction to distributed algorithms. The MIT Press, Chapter 7,
p200–216, 1996

14. Tuomo Takkula: A preflow-push algorithm that handles online max flow problems in a
static asynchronous network (Revision 1.18). Chalmers University of Technology,
Gothenbourg, Sweden, 2001

15. Naya Nagy and Selim G. Akl: The Maximum Flow Problem: A Real-Time Approach.
Technical Report, Dept. of Computing and Information Sciences Queen’s Univ., Canada,
2001

16. R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung: Network information flow. IEEE
Trans. on Information Theory, 46:1204-1216, 2000

Author Index

Assayad, I. 159

Babin, Gilbert 41
Brinkmeier, Michael 29
Bui, Alain 91
Bui, Marc 195

Chaudhary, Sanjay 53

Daher, Robil 147, 171
Do, Si Hoang 195

Flauzac, Olivier 91
Fouchal, Hacène 134

Gidenstam, Anders 17
Gómez, Roberto 126

Herrerias, Jorge 126

Koldehofe, Boris 17
Kolweyh, Magnus 79
Kropf, Peter 41

Lavallee, Ivan 195
Lechner, Ulrike 79
Le, Viet-Dung 41

Malekpour, Abbas 147, 171
Mansour, Nashat 134
Marceĺın-Jiménez, Ricardo 117
Martinez, Alma V. 181
Mata, Erika 126

Papatriantafilou, Marina 17
Patel, Dhawal 53
Pham, Thuy Lien 195
Piza, Hugo I. 181

Rabat, Cyril 91
Ramos, Félix F. 181
Razo, Luis 181

Sakaryan, German 105
Shah, Dhaval 53
Soudoplatoff, Serge 1

Tarhini, Abbas 134
Tavangarian, Djamshid 147, 171
Tsigas, Philippas 17

Unger, Helena 68
Unger, Herwig 105

Yovine, S. 159

Zúñiga, Fabiel 181

	Frontmatter
	Innovation Processes Revisited by Internet
	Lightweight Causal Cluster Consistency
	Distributed Calculation of PageRank Using Strongly Connected Components
	A Structured Peer-to-Peer System with Integrated Index and Storage Load Balancing
	Grid-Based Vehicle Locating System
	The Guadalajara Urban Traffic Control Project -- An Overview About Features and Needs for Tomorrow's Mobile City Communities
	Towards P2P Information Systems
	A Random Walk Topology Management Solution for Grid
	Content-Oriented Self-organization in Unstructured P2P Data Sharing Systems. An Approach to Improve Resource Discovery
	Improving Reliability of Distributed Storage
	Using Lamport's Logical Clocks to Consolidate Log Files from Different Sources
	A Simple Approach for Testing Web Service Based Applications
	Optimizing and Reducing the Delay Latency of Mobile IPv6 Location Management
	Compositional Constraints Generation for Concurrent Real-Time Loops with Interdependent Iterations
	Application Signaling Protocols as Basis for QoS in IP-Based Wireless Networks
	3D Emotional Agent Architecture
	A Distributed Preflow-Push for the Maximum Flow Problem
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

